129 resultados para rearrangement effect of three-body force
em Queensland University of Technology - ePrints Archive
Resumo:
Background: Whole body cryotherapy (WBC) is the therapeutic application of extreme cold air for a short duration. Minimal evidence is available for determining optimal exposure time. Purpose: To explore whether the length of WBC exposure induces differential changes in inflammatory markers, tissue oxygenation, skin and core temperature, thermal sensation and comfort. Method: This study was a randomised cross over design with participants acting as their own control. Fourteen male professional first team super league rugby players were exposed to 1, 2, and 3 minutes of WBC at -135°C. Testing took place the day after a competitive league fixture, each exposure separated by seven days. Results: No significant changes were found in the inflammatory cytokine interleukin six. Significant reductions (p<0.05) in deoxyhaemoglobin for gastrocnemius and vastus lateralis were found. In vastus lateralis significant reductions (p<0.05) in oxyhaemoglobin and tissue oxygenation index (p<0.05) were demonstrated. Significant reductions (p<0.05) in skin temperature were recorded. No significant changes were recorded in core temperature. Significant reductions (p<0.05) in thermal sensation and comfort were recorded. Conclusion: Three brief exposures to WBC separated by 1 week are not sufficient to induce physiological changes in IL-6 or core temperature. There are however significant changes in tissue oxyhaemoglobin, deoxyhaemoglobin, tissue oxygenation index, skin temperature and thermal sensation. We conclude that a 2 minute WBC exposure was the optimum exposure length at temperatures of -135°C and could be applied as the basis for future studies.
Resumo:
In order to assess the structural reliability of bridges, an accurate and cost effective Non-Destructive Evaluation (NDE) technology is required to ensure their safe and reliable operation. Over 60% of the Australian National Highway System is prestressed concrete (PSC) bridges according to the Bureau of Transport and Communication Economics (1997). Most of the in-service bridges are more than 30 years old and may experience a heavier traffic load than their original intended level. Use of Ultrasonic waves is continuously increasing for (NDE) and Structural Health Monitoring (SHM) in civil, aerospace, electrical, mechanical applications. Ultrasonic Lamb waves are becoming more popular for NDE because it can propagate long distance and reach hidden regions with less energy loses. The purpose of this study is to numerically quantify prestress force (PSF) of (PSC) beam using the fundamental theory of acoustic-elasticity. A three-dimension finite element modelling approach is set up to perform parametric studies in order to better understand how the lamb wave propagation in PSC beam is affected by changing in the PSF level. Results from acoustic-elastic measurement on prestressed beam are presented, showing the feasibility of the lamb wave for PSF evaluation in PSC bridges.
Resumo:
The scaling to characterize unsteady boundary layer development for thermo-magnetic convection of paramagnetic fluids with the Prandtl number greater than one is developed. Under the consideration is a square cavity with initially quiescent isothermal fluid placed in microgravity condition (g = 0) and subject to a uniform, vertical gradient magnetic field. A distinct magnetic thermal-boundary layer is produced by sudden imposing of a higher temperature on the vertical sidewall and as an effect of magnetic body force generated on paramagnetic fluid. The transient flow behavior of the resulting boundary layer is shown to be described by three stages: the start-up stage, the transitional stage and the steady state. The scaling is verified by numerical simulations with the magnetic momentum parameter m variation and the parameter γRa variation.
Resumo:
Top screw pullout occurs when the screw is under too much axial force to remain secure in the vertebral body. In vitro biomechanical pullout tests are commonly done to find the maximum fixation strength of anterior vertebral body screws. Typically, pullout tests are done instantaneously where the screw is inserted and then pulled out immediately after insertion. However, bone is a viscoelastic material so it shows a time dependent stress and strain response. Because of this property, it was hypothesised that creep occurs in the vertebral trabecular bone due to the stress caused by the screw. The objective of this study was therefore to determine whether the axial pullout strength of anterior vertebral body screws used for scoliosis correction surgery changes with time after insertion. This study found that there is a possible relationship between pullout strength and time; however more testing is required as the sample numbers were quite small. The design of the screw is made with the knowledge of the strength it must obtain. This is important to prevent such occurrences as top screw pullout. If the pullout strength is indeed decreased due to creep, the design of the screw may need to be changed to withstand greater forces.
Resumo:
BACKGROUND AND OBJECTIVES: College students and young adults are experiencing the greatest increases in rates of obesity, and 20% of college students are classified as obese. The objective of this study was to compare changes and rates of change in body weight and body composition between the freshman academic year and the summer after the freshman year among female college students. METHODS: Participants were recruited early in their freshman year of college to participate in a prospective longitudinal study examining changes in body weight and composition over the college years. Height and weight were measured, and body composition was assessed using dual energy x-ray absorptiometry (DEXA) at the beginning and end of the freshman year. Upon return from the summer for their sophomore year, participants returned to have all measurements repeated. Sixty-nine female participants completed all three visits. RESULTS: Body weight increased 1.3 kg during the academic period and an additional 0.1 kg during the summer period. Body mass index (BMI) increased between the first two visits but did not change between the last two visits. However, percent fat increased at each visit. Fat-free mass significantly increased 0.5 kg over the academic year but decreased by 1.1 kg over the summer (p<0.05). Greater rates of change were detected in percent fat, fat-free mass, and BMI during the summer compared with the academic year (p<0.05). CONCLUSIONS: Differences in body composition between the academic and summer periods may reflect changes in living situations between these periods. Unfavorable changes during the summer suggest the need to promote healthy lifestyles to freshman women before they leave campus for the summer
Resumo:
Flow patterns and aerodynamic characteristics behind three side-by-side square cylinders has been found depending upon the unequal gap spacing (g1 = s1/d and g2 = s2/d) between the three cylinders and the Reynolds number (Re) using the Lattice Boltzmann method. The effect of Reynolds numbers on the flow behind three cylinders are numerically studied for 75 ≤ Re ≤ 175 and chosen unequal gap spacings such as (g1, g2) = (1.5, 1), (3, 4) and (7, 6). We also investigate the effect of g2 while keeping g1 fixed for Re = 150. It is found that a Reynolds number have a strong effect on the flow at small unequal gap spacing (g1, g2) = (1.5, 1.0). It is also found that the secondary cylinder interaction frequency significantly contributes for unequal gap spacing for all chosen Reynolds numbers. It is observed that at intermediate unequal gap spacing (g1, g2) = (3, 4) the primary vortex shedding frequency plays a major role and the effect of secondary cylinder interaction frequencies almost disappear. Some vortices merge near the exit and as a result small modulation found in drag and lift coefficients. This means that with the increase in the Reynolds numbers and unequal gap spacing shows weakens wakes interaction between the cylinders. At large unequal gap spacing (g1, g2) = (7, 6) the flow is fully periodic and no small modulation found in drag and lift coefficients signals. It is found that the jet flows for unequal gap spacing strongly influenced the wake interaction by varying the Reynolds number. These unequal gap spacing separate wake patterns for different Reynolds numbers: flip-flopping, in-phase and anti-phase modulation synchronized, in-phase and anti-phase synchronized. It is also observed that in case of equal gap spacing between the cylinders the effect of gap spacing is stronger than the Reynolds number. On the other hand, in case of unequal gap spacing between the cylinders the wake patterns strongly depends on both unequal gap spacing and Reynolds number. The vorticity contour visualization, time history analysis of drag and lift coefficients, power spectrum analysis of lift coefficient and force statistics are systematically discussed for all chosen unequal gap spacings and Reynolds numbers to fully understand this valuable and practical problem.
Resumo:
The purpose of this study was to compare kinematics and kinetics during walking for healthy subjects using unstable shoes with different designs. Ten subjects participated in this study, and foot biomechanical data during walking were quantified using motion analysis system and a force plate. Data were collected for unstable shoes condition after accommodation period of one week. With soft material added in the heel region, the peak impact force was effectively reduced when compared among similar shapes. In addition, the soft material added in the rocker bottom showed more to be in dorsiflexed position during the initial stance. The shoe with three rocker curves design reduced the contact area in the heel strike, which may result in increasing human body forward speed. Further studies shall be carried out after adapting to long periods of wearing unstable shoes.
Resumo:
Objective: To assess the effect of graded increases in exercised-induced energy expenditure (EE) on appetite, energy intake (EI), total daily EE and body weight in men living in their normal environment and consuming their usual diets. Design: Within-subject, repeated measures design. Six men (mean (s.d.) age 31.0 (5.0) y; weight 75.1 (15.96) kg; height 1.79 (0.10) m; body mass index (BMI) 23.3(2.4) kg/m2), were each studied three times during a 9 day protocol, corresponding to prescriptions of no exercise, (control) (Nex; 0 MJ/day), medium exercise level (Mex; ~1.6 MJ/day) and high exercise level (Hex; ~3.2 MJ/day). On days 1-2 subjects were given a medium fat (MF) maintenance diet (1.6 ´ resting metabolic rate (RMR)). Measurements: On days 3-9 subjects self-recorded dietary intake using a food diary and self-weighed intake. EE was assessed by continual heart rate monitoring, using the modified FLEX method. Subjects' HR (heart rate) was individually calibrated against submaximal VO2 during incremental exercise tests at the beginning and end of each 9 day study period. Respiratory exchange was measured by indirect calorimetry. Subjects completed hourly hunger ratings during waking hours to record subjective sensations of hunger and appetite. Body weight was measured daily. Results: EE amounted to 11.7, 12.9 and 16.8 MJ/day (F(2,10)=48.26; P<0.001 (s.e.d=0.55)) on the Nex, Mex and Hex treatments, respectively. The corresponding values for EI were 11.6, 11.8 and 11.8 MJ/day (F(2,10)=0.10; P=0.910 (s.e.d.=0.10)), respectively. There were no treatment effects on hunger, appetite or body weight, but there was evidence of weight loss on the Hex treatment. Conclusion: Increasing EE did not lead to compensation of EI over 7 days. However, total daily EE tended to decrease over time on the two exercise treatments. Lean men appear able to tolerate a considerable negative energy balance, induced by exercise, over 7 days without invoking compensatory increases in EI.
Resumo:
Nanoindentation is a useful technique for probing the mechanical properties of bone, and finite element (FE) modeling of the indentation allows inverse determination of elasto-plastic constitutive properties. However, FE simulations to date have assumed frictionless contact between indenter and bone. The aim of this study was to explore the effect of friction in simulations of bone nanoindentation. Two dimensional axisymmetric FE simulations were performed using a spheroconical indenter of tip radius 0.6m and angle 90°. The coefficient of friction between indenter and bone was varied between 0.0 (frictionless) and 0.3. Isotropic linear elasticity was used in all simulations, with bone elastic modulus E=13.56GPa and Poisson’s ratio =0.3. Plasticity was incorporated using both Drucker-Prager and von Mises yield surfaces. Friction had a modest effect on the predicted force-indentation curve for both von Mises and Drucker-Prager plasticity, reducing maximum indenter displacement by 10% and 20% respectively as friction coefficient was increased from zero to 0.3 (at a maximum indenter force of 5mN). However, friction has a much greater effect on predicted pile-up after indentation, reducing predicted pile-up from 0.27m to 0.11m with a von Mises model, and from 0.09m to 0.02m with Drucker-Prager plasticity. We conclude that it is important to include friction in nanoindentation simulations of bone.
Resumo:
Nanoindentation is a useful technique for probing the mechanical properties of bone, and finite element (FE) modeling of the indentation allows inverse determination of elasto-plastic constitutive properties. However, all but one FE study to date have assumed frictionless contact between indenter and bone. The aim of this study was to explore the effect of friction in simulations of bone nanoindentation. Two dimensional axisymmetric FE simulations were performed using a spheroconical indenter of tip radius 0.6 m and angle 90°. The coefficient of friction between indenter and bone was varied between 0.0 (frictionless) and 0.3. Isotropic linear elasticity was used in all simulations, with bone elastic modulus E=13.56GPa and Poisson‟s ratio f 0.3. Plasticity was incorporated using both Drucker-Prager and von Mises yield surfaces. Friction had a modest effect on the predicted force-indentation curve for both von Mises and Drucker-Prager plasticity, reducing maximum indenter displacement by 10% and 20% respectively as friction coefficient was increased from zero to 0.3 (at a maximum indenter force of 5mN). However, friction has a much greater effect on predicted pile-up after indentation, reducing predicted pile-up from 0.27 to 0.11 m with a von Mises model, and from 0.09 to 0.02 m with Drucker-Prager plasticity. We conclude that it is potentially important to include friction in nanoindentation simulations of bone if pile-up is used to compare simulation results with experiment.
Resumo:
Understanding the relationship between diet, physical activity and health in humans requires accurate measurement of body composition and daily energy expenditure. Stable isotopes provide a means of measuring total body water and daily energy expenditure under free-living conditions. While the use of isotope ratio mass spectrometry (IRMS) for the analysis of 2H (Deuterium) and 18O (Oxygen-18) is well established in the field of human energy metabolism research, numerous questions remain regarding the factors which influence analytical and measurement error using this methodology. This thesis was comprised of four studies with the following emphases. The aim of Study 1 was to determine the analytical and measurement error of the IRMS with regard to sample handling under certain conditions. Study 2 involved the comparison of TEE (Total daily energy expenditure) using two commonly employed equations. Further, saliva and urine samples, collected at different times, were used to determine if clinically significant differences would occur. Study 3 was undertaken to determine the appropriate collection times for TBW estimates and derived body composition values. Finally, Study 4, a single case study to investigate if TEE measures are affected when the human condition changes due to altered exercise and water intake. The aim of Study 1 was to validate laboratory approaches to measure isotopic enrichment to ensure accurate (to international standards), precise (reproducibility of three replicate samples) and linear (isotope ratio was constant over the expected concentration range) results. This established the machine variability for the IRMS equipment in use at Queensland University for both TBW and TEE. Using either 0.4mL or 0.5mL sample volumes for both oxygen-18 and deuterium were statistically acceptable (p>0.05) and showed a within analytical variance of 5.8 Delta VSOW units for deuterium, 0.41 Delta VSOW units for oxygen-18. This variance was used as “within analytical noise” to determine sample deviations. It was also found that there was no influence of equilibration time on oxygen-18 or deuterium values when comparing the minimum (oxygen-18: 24hr; deuterium: 3 days) and maximum (oxygen-18: and deuterium: 14 days) equilibration times. With regard to preparation using the vacuum line, any order of preparation is suitable as the TEE values fall within 8% of each other regardless of preparation order. An 8% variation is acceptable for the TEE values due to biological and technical errors (Schoeller, 1988). However, for the automated line, deuterium must be assessed first followed by oxygen-18 as the automated machine line does not evacuate tubes but merely refills them with an injection of gas for a predetermined time. Any fractionation (which may occur for both isotopes), would cause a slight elevation in the values and hence a lower TEE. The purpose of the second and third study was to investigate the use of IRMS to measure the TEE and TBW of and to validate the current IRMS practices in use with regard to sample collection times of urine and saliva, the use of two TEE equations from different research centers and the body composition values derived from these TEE and TBW values. Following the collection of a fasting baseline urine and saliva sample, 10 people (8 women, 2 men) were dosed with a doubly labeled water does comprised of 1.25g 10% oxygen-18 and 0.1 g 100% deuterium/kg body weight. The samples were collected hourly for 12 hrs on the first day and then morning, midday, and evening samples were collected for the next 14 days. The samples were analyzed using an isotope ratio mass spectrometer. For the TBW, time to equilibration was determined using three commonly employed data analysis approaches. Isotopic equilibration was reached in 90% of the sample by hour 6, and in 100% of the sample by hour 7. With regard to the TBW estimations, the optimal time for urine collection was found to be between hours 4 and 10 as to where there was no significant difference between values. In contrast, statistically significant differences in TBW estimations were found between hours 1-3 and from 11-12 when compared with hours 4-10. Most of the individuals in this study were in equilibrium after 7 hours. The TEE equations of Prof Dale Scholler (Chicago, USA, IAEA) and Prof K.Westerterp were compared with that of Prof. Andrew Coward (Dunn Nutrition Centre). When comparing values derived from samples collected in the morning and evening there was no effect of time or equation on resulting TEE values. The fourth study was a pilot study (n=1) to test the variability in TEE as a result of manipulations in fluid consumption and level of physical activity; the magnitude of change which may be expected in a sedentary adult. Physical activity levels were manipulated by increasing the number of steps per day to mimic the increases that may result when a sedentary individual commences an activity program. The study was comprised of three sub-studies completed on the same individual over a period of 8 months. There were no significant changes in TBW across all studies, even though the elimination rates changed with the supplemented water intake and additional physical activity. The extra activity may not have sufficiently strenuous enough and the water intake high enough to cause a significant change in the TBW and hence the CO2 production and TEE values. The TEE values measured show good agreement based on the estimated values calculated on an RMR of 1455 kcal/day, a DIT of 10% of TEE and activity based on measured steps. The covariance values tracked when plotting the residuals were found to be representative of “well-behaved” data and are indicative of the analytical accuracy. The ratio and product plots were found to reflect the water turnover and CO2 production and thus could, with further investigation, be employed to identify the changes in physical activity.