129 resultados para quantum computation
em Queensland University of Technology - ePrints Archive
Resumo:
One of the earliest cryptographic applications of quantum information was to create quantum digital cash that could not be counterfeited. In this paper, we describe a new type of quantum money: quantum coins, where all coins of the same denomination are represented by identical quantum states. We state desirable security properties such as anonymity and unforgeability and propose two candidate quantum coin schemes: one using black box operations, and another using blind quantum computation.
Resumo:
A one-time program is a hypothetical device by which a user may evaluate a circuit on exactly one input of his choice, before the device self-destructs. One-time programs cannot be achieved by software alone, as any software can be copied and re-run. However, it is known that every circuit can be compiled into a one-time program using a very basic hypothetical hardware device called a one-time memory. At first glance it may seem that quantum information, which cannot be copied, might also allow for one-time programs. But it is not hard to see that this intuition is false: one-time programs for classical or quantum circuits based solely on quantum information do not exist, even with computational assumptions. This observation raises the question, "what assumptions are required to achieve one-time programs for quantum circuits?" Our main result is that any quantum circuit can be compiled into a one-time program assuming only the same basic one-time memory devices used for classical circuits. Moreover, these quantum one-time programs achieve statistical universal composability (UC-security) against any malicious user. Our construction employs methods for computation on authenticated quantum data, and we present a new quantum authentication scheme called the trap scheme for this purpose. As a corollary, we establish UC-security of a recent protocol for delegated quantum computation.
Resumo:
Modulation of material physical and chemical properties through selective surface engineering is currently one of the most active research fields, aimed at optimizing functional performance for applications. The activity of exposed crystal planes determines the catalytic, sensory, photocatalytic, and electrochemical behavior of a material. In the research on nanomagnets, it opens up new perspectives in the fields of nanoelectronics, spintronics, and quantum computation. Herein, we demonstrate controllable magnetic modulation of α-MnO 2 nanowires, which displayed surface ferromagnetism or antiferromagnetism, depending on the exposed plane. First-principles density functional theory calculations confirm that both Mn- and O-terminated α-MnO2(1 1 0) surfaces exhibit ferromagnetic ordering. The investigation of surface-controlled magnetic particles will lead to significant progress in our fundamental understanding of functional aspects of magnetism on the nanoscale, facilitating rational design of nanomagnets. Moreover, we approved that the facet engineering pave the way on designing semiconductors possessing unique properties for novel energy applications, owing to that the bandgap and the electronic transport of the semiconductor can be tailored via exposed surface modulations.
Resumo:
Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.
Resumo:
Following an early claim by Nelson & McEvoy suggesting that word associations can display `spooky action at a distance behaviour', a serious investigation of the potentially quantum nature of such associations is currently underway. In this paper quantum theory is proposed as a framework suitable for modelling the mental lexicon, specifically the results obtained from both intralist and extralist word association experiments. Some initial models exploring this hypothesis are discussed, and they appear to be capable of substantial agreement with pre-existing experimental data. The paper concludes with a discussion of some experiments that will be performed in order to test these models.
Resumo:
New models of human cognition inspired by quantum theory could underpin information technologies that are better aligned with howwe recall information.
Resumo:
This talk proceeds from the premise that IR should engage in a more substantial dialogue with cognitive science. After all, how users decide relevance, or how they chose terms to modify a query are processes rooted in human cognition. Recently, there has been a growing literature applying quantum theory (QT) to model cognitive phenomena. This talk will survey recent research, in particular, modelling interference effects in human decision making. One aspect of QT will be illustrated - how quantum entanglement can be used to model word associations in human memory. The implications of this will be briefly discussed in terms of a new approach for modelling concept combinations. Tentative links to human adductive reasoning will also be drawn. The basic theme behind this talk is QT can potentially provide a new genre of information processing models (including search) more aligned with human cognition.
Resumo:
Industrial applications of the simulated-moving-bed (SMB) chromatographic technology have brought an emergent demand to improve the SMB process operation for higher efficiency and better robustness. Improved process modelling and more-efficient model computation will pave a path to meet this demand. However, the SMB unit operation exhibits complex dynamics, leading to challenges in SMB process modelling and model computation. One of the significant problems is how to quickly obtain the steady state of an SMB process model, as process metrics at the steady state are critical for process design and real-time control. The conventional computation method, which solves the process model cycle by cycle and takes the solution only when a cyclic steady state is reached after a certain number of switching, is computationally expensive. Adopting the concept of quasi-envelope (QE), this work treats the SMB operation as a pseudo-oscillatory process because of its large number of continuous switching. Then, an innovative QE computation scheme is developed to quickly obtain the steady state solution of an SMB model for any arbitrary initial condition. The QE computation scheme allows larger steps to be taken for predicting the slow change of the starting state within each switching. Incorporating with the wavelet-based technique, this scheme is demonstrated to be effective and efficient for an SMB sugar separation process. Moreover, investigations are also carried out on when the computation scheme should be activated and how the convergence of the scheme is affected by a variable stepsize.
Resumo:
Object tracking systems require accurate segmentation of the objects from the background for effective tracking. Motion segmentation or optical flow can be used to segment incoming images. Whilst optical flow allows multiple moving targets to be separated based on their individual velocities, optical flow techniques are prone to errors caused by changing lighting and occlusions, both common in a surveillance environment. Motion segmentation techniques are more robust to fluctuating lighting and occlusions, but don't provide information on the direction of the motion. In this paper we propose a combined motion segmentation/optical flow algorithm for use in object tracking. The proposed algorithm uses the motion segmentation results to inform the optical flow calculations and ensure that optical flow is only calculated in regions of motion, and improve the performance of the optical flow around the edge of moving objects. Optical flow is calculated at pixel resolution and tracking of flow vectors is employed to improve performance and detect discontinuities, which can indicate the location of overlaps between objects. The algorithm is evaluated by attempting to extract a moving target within the flow images, given expected horizontal and vertical movement (i.e. the algorithms intended use for object tracking). Results show that the proposed algorithm outperforms other widely used optical flow techniques for this surveillance application.
Resumo:
Quantum psychopathology holds the so called “quantum mind” hypothesis, which is controversial. In addition, this hypothesis focuses attention onto quantum processes in the brain, and how this may relate to psychopathological issues. This is very “low level”. As a consequence, it is challenging to form bridges to “higher level” problems related to psychopathology. By adopting the stance used in the quantum interaction community or researchers, this reply puts forward the idea that an idealistic approach may circumvent the controversy and opens the way for addressing challenges at higher levels of psychopathology.
Resumo:
This paper focuses on the varying approaches and methodologies adopted when the calculation of holding costs is undertaken, focusing on greenfield development. Whilst acknowledging there may be some consistency in embracing first principles relating to holding cost theory, a review of the literature reveals considerable lack of uniformity in this regard. There is even less clarity in quantitative determination, especially in Australia where there has been only limited empirical analysis undertaken. Despite a growing quantum of research undertaken in relation to various elements connected with housing affordability, the matter of holding costs has not been well addressed regardless of its part in the highly prioritised Australian Government’s housing research agenda. The end result has been a modicum of qualitative commentary relating to holding costs. There have been few attempts at finer-tuned analysis that exposes a quantified level of holding cost calculated with underlying rigour. Holding costs can take many forms, but they inevitably involve the computation of “carrying costs” of an initial outlay that has yet to fully realise its ultimate yield. Although sometimes considered a “hidden” cost, it is submitted that holding costs prospectively represent a major determinate of value. If this is the case, then considered in the context of housing affordability, it is therefore potentially pervasive.
Resumo:
This thesis is about the derivation of the addition law on an arbitrary elliptic curve and efficiently adding points on this elliptic curve using the derived addition law. The outcomes of this research guarantee practical speedups in higher level operations which depend on point additions. In particular, the contributions immediately find applications in cryptology. Mastered by the 19th century mathematicians, the study of the theory of elliptic curves has been active for decades. Elliptic curves over finite fields made their way into public key cryptography in late 1980’s with independent proposals by Miller [Mil86] and Koblitz [Kob87]. Elliptic Curve Cryptography (ECC), following Miller’s and Koblitz’s proposals, employs the group of rational points on an elliptic curve in building discrete logarithm based public key cryptosystems. Starting from late 1990’s, the emergence of the ECC market has boosted the research in computational aspects of elliptic curves. This thesis falls into this same area of research where the main aim is to speed up the additions of rational points on an arbitrary elliptic curve (over a field of large characteristic). The outcomes of this work can be used to speed up applications which are based on elliptic curves, including cryptographic applications in ECC. The aforementioned goals of this thesis are achieved in five main steps. As the first step, this thesis brings together several algebraic tools in order to derive the unique group law of an elliptic curve. This step also includes an investigation of recent computer algebra packages relating to their capabilities. Although the group law is unique, its evaluation can be performed using abundant (in fact infinitely many) formulae. As the second step, this thesis progresses the finding of the best formulae for efficient addition of points. In the third step, the group law is stated explicitly by handling all possible summands. The fourth step presents the algorithms to be used for efficient point additions. In the fifth and final step, optimized software implementations of the proposed algorithms are presented in order to show that theoretical speedups of step four can be practically obtained. In each of the five steps, this thesis focuses on five forms of elliptic curves over finite fields of large characteristic. A list of these forms and their defining equations are given as follows: (a) Short Weierstrass form, y2 = x3 + ax + b, (b) Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1, (c) Twisted Hessian form, ax3 + y3 + 1 = dxy, (d) Twisted Edwards form, ax2 + y2 = 1 + dx2y2, (e) Twisted Jacobi intersection form, bs2 + c2 = 1, as2 + d2 = 1, These forms are the most promising candidates for efficient computations and thus considered in this work. Nevertheless, the methods employed in this thesis are capable of handling arbitrary elliptic curves. From a high level point of view, the following outcomes are achieved in this thesis. - Related literature results are brought together and further revisited. For most of the cases several missed formulae, algorithms, and efficient point representations are discovered. - Analogies are made among all studied forms. For instance, it is shown that two sets of affine addition formulae are sufficient to cover all possible affine inputs as long as the output is also an affine point in any of these forms. In the literature, many special cases, especially interactions with points at infinity were omitted from discussion. This thesis handles all of the possibilities. - Several new point doubling/addition formulae and algorithms are introduced, which are more efficient than the existing alternatives in the literature. Most notably, the speed of extended Jacobi quartic, twisted Edwards, and Jacobi intersection forms are improved. New unified addition formulae are proposed for short Weierstrass form. New coordinate systems are studied for the first time. - An optimized implementation is developed using a combination of generic x86-64 assembly instructions and the plain C language. The practical advantages of the proposed algorithms are supported by computer experiments. - All formulae, presented in the body of this thesis, are checked for correctness using computer algebra scripts together with details on register allocations.
Resumo:
Presentation about information modelling and artificial intelligence, semantic structure, cognitive processing and quantum theory.