778 resultados para product modelling
em Queensland University of Technology - ePrints Archive
Resumo:
This paper provides conceptual and empirical insights into consumers’ evaluations of online services and their consequent behavioural intentions. We show that behavioural intentions in online contexts are driven primarily by two factors, namely online service satisfaction and perceived service quality. Perceived sacrifice and service quality are found to have an indirect effect on online service satisfaction through their influences on perceived value associated with the online service. In addition, we examine the moderating effects of product involvement and discuss the implications of our research findings.
Resumo:
These National Guidelines and Case Studies for Digital Modelling are the outcomes from one of a number of Building Information Modelling (BIM)-related projects undertaken by the CRC for Construction Innovation. Since the CRC opened its doors in 2001, the industry has seen a rapid increase in interest in BIM, and widening adoption. These guidelines and case studies are thus very timely, as the industry moves to model-based working and starts to share models in a new context called integrated practice. Governments, both federal and state, and in New Zealand are starting to outline the role they might take, so that in contrast to the adoption of 2D CAD in the early 90s, we ensure that a national, industry-wide benefit results from this new paradigm of working. Section 1 of the guidelines give us an overview of BIM: how it affects our current mode of working, what we need to do to move to fully collaborative model-based facility development. The role of open standards such as IFC is described as a mechanism to support new processes, and make the extensive design and construction information available to asset operators and managers. Digital collaboration modes, types of models, levels of detail, object properties and model management complete this section. It will be relevant for owners, managers and project leaders as well as direct users of BIM. Section 2 provides recommendations and guides for key areas of model creation and development, and the move to simulation and performance measurement. These are the more practical parts of the guidelines developed for design professionals, BIM managers, technical staff and ‘in the field’ workers. The guidelines are supported by six case studies including a summary of lessons learnt about implementing BIM in Australian building projects. A key aspect of these publications is the identification of a number of important industry actions: the need for BIM-compatible product information and a national context for classifying product data; the need for an industry agreement and setting process-for-process definition; and finally, the need to ensure a national standard for sharing data between all of the participants in the facility-development process.
Resumo:
These National Guidelines and Case Studies for Digital Modelling are the outcomes from one of a number of Building Information Modelling (BIM)-related projects undertaken by the CRC for Construction Innovation. Since the CRC opened its doors in 2001, the industry has seen a rapid increase in interest in BIM, and widening adoption. These guidelines and case studies are thus very timely, as the industry moves to model-based working and starts to share models in a new context called integrated practice. Governments, both federal and state, and in New Zealand are starting to outline the role they might take, so that in contrast to the adoption of 2D CAD in the early 90s, we ensure that a national, industry-wide benefit results from this new paradigm of working. Section 1 of the guidelines give us an overview of BIM: how it affects our current mode of working, what we need to do to move to fully collaborative model-based facility development. The role of open standards such as IFC is described as a mechanism to support new processes, and make the extensive design and construction information available to asset operators and managers. Digital collaboration modes, types of models, levels of detail, object properties and model management complete this section. It will be relevant for owners, managers and project leaders as well as direct users of BIM. Section 2 provides recommendations and guides for key areas of model creation and development, and the move to simulation and performance measurement. These are the more practical parts of the guidelines developed for design professionals, BIM managers, technical staff and ‘in the field’ workers. The guidelines are supported by six case studies including a summary of lessons learnt about implementing BIM in Australian building projects. A key aspect of these publications is the identification of a number of important industry actions: the need for BIMcompatible product information and a national context for classifying product data; the need for an industry agreement and setting process-for-process definition; and finally, the need to ensure a national standard for sharing data between all of the participants in the facility-development process.
Resumo:
Student learning research literature has shown that students' learning approaches are influenced by the learning context (Evans, Kirby, & Fabrigar, 2003). Of the many contextual factors, assessment has been found to have the most important influence on the way students go about learning. For example, assessment that is perceived to required a low level of cognitive abilities will more likely elicit a learning approach that concentrate on reproductive learning activities. Moreover, assessment demand will also interact with learning approach to determine academic performance. In this paper an assessment specific model of learning comprising presage, process and product variables (Biggs, 2001) was proposed and tested against data obtained from a sample of introductory economics students (n=434). The model developed was used to empirically investigate the influence of learning inputs and learning approaches on academic performances across assessment types (essay assignment, multiple choice question exam and exam essay). By including learning approaches in the learning model, the mechanism through which learning inputs determine academic performance was examined. Methodological limitations of the study will also be discussed.
Resumo:
Public transport is one of the key promoters of sustainable urban transport. To encourage and increase public transport patronage it is important to investigate the route choice behaviours of urban public transit users. This chapter reviews the main developments of modelling urban public transit users’ route choice behaviours in a historical perspective, from the 1960s to the present time. The approaches re- viewed for this study include the early heuristic studies on finding the least-cost transit route and all-or- nothing transit assignment, the bus common lines problem, the disaggregate discrete choice models, the deterministic and stochastic user equilibrium transit assignment models, and the recent dynamic transit assignment models. This chapter also provides an outlook for the future directions of modelling transit users’ route choice behaviours. Through the comparison with the development of models for motorists’ route choice and traffic assignment problems, this chapter advocates that transit route choice research should draw inspiration from the research outcomes from the road area, and that the modelling practice of transit users’ route choice should further explore the behavioural complexities.
Resumo:
Biochemical reactions underlying genetic regulation are often modelled as a continuous-time, discrete-state, Markov process, and the evolution of the associated probability density is described by the so-called chemical master equation (CME). However the CME is typically difficult to solve, since the state-space involved can be very large or even countably infinite. Recently a finite state projection method (FSP) that truncates the state-space was suggested and shown to be effective in an example of a model of the Pap-pili epigenetic switch. However in this example, both the model and the final time at which the solution was computed, were relatively small. Presented here is a Krylov FSP algorithm based on a combination of state-space truncation and inexact matrix-vector product routines. This allows larger-scale models to be studied and solutions for larger final times to be computed in a realistic execution time. Additionally the new method computes the solution at intermediate times at virtually no extra cost, since it is derived from Krylov-type methods for computing matrix exponentials. For the purpose of comparison the new algorithm is applied to the model of the Pap-pili epigenetic switch, where the original FSP was first demonstrated. Also the method is applied to a more sophisticated model of regulated transcription. Numerical results indicate that the new approach is significantly faster and extendable to larger biological models.
Resumo:
With the growth of the Web, E-commerce activities are also becoming popular. Product recommendation is an effective way of marketing a product to potential customers. Based on a user’s previous searches, most recommendation methods employ two dimensional models to find relevant items. Such items are then recommended to a user. Further too many irrelevant recommendations worsen the information overload problem for a user. This happens because such models based on vectors and matrices are unable to find the latent relationships that exist between users and searches. Identifying user behaviour is a complex process, and usually involves comparing searches made by him. In most of the cases traditional vector and matrix based methods are used to find prominent features as searched by a user. In this research we employ tensors to find relevant features as searched by users. Such relevant features are then used for making recommendations. Evaluation on real datasets show the effectiveness of such recommendations over vector and matrix based methods.
Resumo:
Digital human modeling (DHM), as a convenient and cost-effective tool, is increasingly incorporated into product and workplace design. In product design, it is predominantly used for the development of driver-vehicle systems. Most digital human modeling software tools, such as JACK, RAMSIS and DELMIA HUMANBUILDER provide functions to predict posture and positions for drivers with selected anthropometry according to SAE (Society of Automotive Engineers) Recommended Practices and other ergonomics guidelines. However, few studies have presented 2nd row passenger postural information, and digital human modeling of these passenger postures cannot be performed directly using the existing driver posture prediction functions. In this paper, the significant studies related to occupant posture and modeling were reviewed and a framework of determinants of driver vs. 2nd row occupant posture modeling was extracted. The determinants which are regarded as input factors for posture modeling include target population anthropometry, vehicle package geometry and seat design variables as well as task definitions. The differences between determinants of driver and 2nd row occupant posture models are significant, as driver posture modeling is primarily based on the position of the foot on the accelerator pedal (accelerator actuation point AAP, accelerator heel point AHP) and the hands on the steering wheel (steering wheel centre point A-Point). The objectives of this paper are aimed to investigate those differences between driver and passenger posture, and to supplement the existing parametric model for occupant posture prediction. With the guide of the framework, the associated input parameters of occupant digital human models of both driver and second row occupant will be identified. Beyond the existing occupant posture models, for example a driver posture model could be modified to predict second row occupant posture, by adjusting the associated input parameters introduced in this paper. This study combines results from a literature review and the theoretical modeling stage of a second row passenger posture prediction model project.
Resumo:
Digital human modelling (DHM) has today matured from research into industrial application. In the automotive domain, DHM has become a commonly used tool in virtual prototyping and human-centred product design. While this generation of DHM supports the ergonomic evaluation of new vehicle design during early design stages of the product, by modelling anthropometry, posture, motion or predicting discomfort, the future of DHM will be dominated by CAE methods, realistic 3D design, and musculoskeletal and soft tissue modelling down to the micro-scale of molecular activity within single muscle fibres. As a driving force for DHM development, the automotive industry has traditionally used human models in the manufacturing sector (production ergonomics, e.g. assembly) and the engineering sector (product ergonomics, e.g. safety, packaging). In product ergonomics applications, DHM share many common characteristics, creating a unique subset of DHM. These models are optimised for a seated posture, interface to a vehicle seat through standardised methods and provide linkages to vehicle controls. As a tool, they need to interface with other analytic instruments and integrate into complex CAD/CAE environments. Important aspects of current DHM research are functional analysis, model integration and task simulation. Digital (virtual, analytic) prototypes or digital mock-ups (DMU) provide expanded support for testing and verification and consider task-dependent performance and motion. Beyond rigid body mechanics, soft tissue modelling is evolving to become standard in future DHM. When addressing advanced issues beyond the physical domain, for example anthropometry and biomechanics, modelling of human behaviours and skills is also integrated into DHM. Latest developments include a more comprehensive approach through implementing perceptual, cognitive and performance models, representing human behaviour on a non-physiologic level. Through integration of algorithms from the artificial intelligence domain, a vision of the virtual human is emerging.
Resumo:
Prototyping is an established and accepted practice used by the design community. Prototypes play a valuable role during the design process and can greatly affect the designed outcome. The concept of a business model prototype, however, is not well understood by the design and business communities. Design industry trends indicate a move away from product and service innovation towards business model innovation. Therefore, it stands to reason that the role of prototypes and prototyping in this context should also be considered. This paper is conceptual and presents a process for creating and enabling business model prototypes. Specifically, the focus is on building emotional connections across the value chain to enable internal growth within firms. To do this, the authors‟ have relied on personal observations and critical reflection from multiple industry engagements. The outcomes of this critical reflective practice are presented and the opportunities and challenges for this approach are discussed. Future research opportunities are also detailed and presented within the context of the emotional business model.
Resumo:
The automotive industry has been the focus of digital human modeling (DHM) research and application for many years. In the highly competitive marketplace for personal transportation, the desire to improve the customer’s experience has driven extensive research in both the physical and cognitive interaction between the vehicle and its occupants. Human models provide vehicle designers with tools to view and analyze product interactions before the first prototypes are built, potentially improving the design while reducing cost and development time. The focus of DHM research and applications began with prediction and representation of static postures for purposes of driver workstation layout, including assessments of seat adjustment ranges and exterior vision. Now DHMs are used for seat design and assessment of driver reach and ingress/egress. DHMs and related simulation tools are expanding into the cognitive domain, with computational models of perception and motion, and into the dynamic domain with models of physical responses to ride and vibration. Moreover, DHMs are now widely used to analyze the ergonomics of vehicle assembly tasks. In this case, the analysis aims to determine whether workers can be expected to complete the tasks safely and with good quality. This preface provides a review of the literature to provide context for the nine new papers presented in this special issue.
Resumo:
Identifying the design features that impact construction is essential to developing cost effective and constructible designs. The similarity of building components is a critical design feature that affects method selection, productivity, and ultimately construction cost and schedule performance. However, there is limited understanding of what constitutes similarity in the design of building components and limited computer-based support to identify this feature in a building product model. This paper contributes a feature-based framework for representing and reasoning about component similarity that builds on ontological modelling, model-based reasoning and cluster analysis techniques. It describes the ontology we developed to characterize component similarity in terms of the component attributes, the direction, and the degree of variation. It also describes the generic reasoning process we formalized to identify component similarity in a standard product model based on practitioners' varied preferences. The generic reasoning process evaluates the geometric, topological, and symbolic similarities between components, creates groupings of similar components, and quantifies the degree of similarity. We implemented this reasoning process in a prototype cost estimating application, which creates and maintains cost estimates based on a building product model. Validation studies of the prototype system provide evidence that the framework is general and enables a more accurate and efficient cost estimating process.
Resumo:
An evolution in the use of digital modelling has occurred in the Queensland Department of Public Works Division of Project Services over the last 20 years from: the initial implementation of computer aided design and documentation (CADD); to experimentation with building information modelling (BIM); to embedding integrated practice (IP); to current steps towards integrated project delivery (IPD) including the active involvement of consultants and contractors in the design/delivery process. This case study is one of three undertaken through the Australian Sustainable Built Environment National Research Centre investigating past R&D investment. The intent of these cases is to inform the development of policy guidelines for future investment in the construction industry in Australia. This research is informing the activities of CIB Task Group 85 R&D Investment and Impact. The uptake of digital modelling by Project Services has been approached through an incremental learning approach. This has been driven by a strong and clear vision with a focus on developing more efficient delivery mechanisms through the use of new technology coupled with process change. Findings reveal an organisational focus on several areas including: (i) strategic decision making including the empowerment of innovation leaders and champions; (ii) the acquisition and exploitation of knowledge; (iii) product and process development (with a focus on efficiency and productivity); (iv) organisational learning; (v) maximising the use of technology; and (vi) supply chain integration. Key elements of this approach include pilot projects, researcher engagement, industry partnerships and leadership.
Resumo:
The rapid growth of visual information on Web has led to immense interest in multimedia information retrieval (MIR). While advancement in MIR systems has achieved some success in specific domains, particularly the content-based approaches, general Web users still struggle to find the images they want. Despite the success in content-based object recognition or concept extraction, the major problem in current Web image searching remains in the querying process. Since most online users only express their needs in semantic terms or objects, systems that utilize visual features (e.g., color or texture) to search images create a semantic gap which hinders general users from fully expressing their needs. In addition, query-by-example (QBE) retrieval imposes extra obstacles for exploratory search because users may not always have the representative image at hand or in mind when starting a search (i.e. the page zero problem). As a result, the majority of current online image search engines (e.g., Google, Yahoo, and Flickr) still primarily use textual queries to search. The problem with query-based retrieval systems is that they only capture users’ information need in terms of formal queries;; the implicit and abstract parts of users’ information needs are inevitably overlooked. Hence, users often struggle to formulate queries that best represent their needs, and some compromises have to be made. Studies of Web search logs suggest that multimedia searches are more difficult than textual Web searches, and Web image searching is the most difficult compared to video or audio searches. Hence, online users need to put in more effort when searching multimedia contents, especially for image searches. Most interactions in Web image searching occur during query reformulation. While log analysis provides intriguing views on how the majority of users search, their search needs or motivations are ultimately neglected. User studies on image searching have attempted to understand users’ search contexts in terms of users’ background (e.g., knowledge, profession, motivation for search and task types) and the search outcomes (e.g., use of retrieved images, search performance). However, these studies typically focused on particular domains with a selective group of professional users. General users’ Web image searching contexts and behaviors are little understood although they represent the majority of online image searching activities nowadays. We argue that only by understanding Web image users’ contexts can the current Web search engines further improve their usefulness and provide more efficient searches. In order to understand users’ search contexts, a user study was conducted based on university students’ Web image searching in News, Travel, and commercial Product domains. The three search domains were deliberately chosen to reflect image users’ interests in people, time, event, location, and objects. We investigated participants’ Web image searching behavior, with the focus on query reformulation and search strategies. Participants’ search contexts such as their search background, motivation for search, and search outcomes were gathered by questionnaires. The searching activity was recorded with participants’ think aloud data for analyzing significant search patterns. The relationships between participants’ search contexts and corresponding search strategies were discovered by Grounded Theory approach. Our key findings include the following aspects: - Effects of users' interactive intents on query reformulation patterns and search strategies - Effects of task domain on task specificity and task difficulty, as well as on some specific searching behaviors - Effects of searching experience on result expansion strategies A contextual image searching model was constructed based on these findings. The model helped us understand Web image searching from user perspective, and introduced a context-aware searching paradigm for current retrieval systems. A query recommendation tool was also developed to demonstrate how users’ query reformulation contexts can potentially contribute to more efficient searching.
Resumo:
Bangkok Metropolitan Region (BMR) is the centre for various major activities in Thailand including political, industry, agriculture, and commerce. Consequently, the BMR is the highest and most densely populated area in Thailand. Thus, the demand for houses in the BMR is also the largest, especially in subdivision developments. For these reasons, the subdivision development in the BMR has increased substantially in the past 20 years and generated large numbers of subdivision developments (AREA, 2009; Kridakorn Na Ayutthaya & Tochaiwat, 2010). However, this dramatic growth of subdivision development has caused several problems including unsustainable development, especially for subdivision neighbourhoods, in the BMR. There have been rating tools that encourage the sustainability of neighbourhood design in subdivision development, but they still have practical problems. Such rating tools do not cover the scale of the development entirely; and they concentrate more on the social and environmental conservation aspects, which have not been totally accepted by the developers (Boonprakub, 2011; Tongcumpou & Harvey, 1994). These factors strongly confirm the need for an appropriate rating tool for sustainable subdivision neighbourhood design in the BMR. To improve level of acceptance from all stakeholders in subdivision developments industry, the new rating tool should be developed based on an approach that unites the social, environmental, and economic approaches, such as eco-efficiency principle. Eco-efficiency is the sustainability indicator introduced by the World Business Council for Sustainable Development (WBCSD) since 1992. The eco-efficiency is defined as the ratio of the product or service value according to its environmental impact (Lehni & Pepper, 2000; Sorvari et al., 2009). Eco-efficiency indicator is concerned to the business, while simultaneously, is concerned with to social and the environment impact. This study aims to develop a new rating tool named "Rating for sustainable subdivision neighbourhood design (RSSND)". The RSSND methodology is developed by a combination of literature reviews, field surveys, the eco-efficiency model development, trial-and-error technique, and the tool validation process. All required data has been collected by the field surveys from July to November 2010. The ecoefficiency model is a combination of three different mathematical models; the neighbourhood property price (NPP) model, the neighbourhood development cost (NDC) model, and the neighbourhood occupancy cost (NOC) model which are attributable to the neighbourhood subdivision design. The NPP model is formulated by hedonic price model approach, while the NDC model and NOC model are formulated by the multiple regression analysis approach. The trial-and-error technique is adopted for simplifying the complex mathematic eco-efficiency model to a user-friendly rating tool format. Credibility of the RSSND has been validated by using both rated and non-rated of eight subdivisions. It is expected to meet the requirements of all stakeholders which support the social activities of the residents, maintain the environmental condition of the development and surrounding areas, and meet the economic requirements of the developers.