408 resultados para probability distribution

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aiming at the shortage of prevailing prediction methods about highway truck conveyance configuration in over-limit freight research that transferring the goods attributed to over-limit portion to another fully loaded truck of the same configuration and developing the truck traffic volume synchronously, a new way to get accumulated probability function of truck power tonnage in basal year by highway truck classified by wheel and axle type load mass spectrum investigation was presented. Logit models were used to forecast overall highway freight diversion and single cargo tonnage diversion when the weight rules and strict of enforcement intensity of overload were changed in scheme year. Assumption that the probability distribution of single truck loadage should be consistent with the probability distribution of single goods freighted, the model describes the truck conveyance configuration in the future under strict over-limit prohibition. The model was used and tested in Highway Over-limit Research Project in Anhui by World Bank.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The refractive error of a human eye varies across the pupil and therefore may be treated as a random variable. The probability distribution of this random variable provides a means for assessing the main refractive properties of the eye without the necessity of traditional functional representation of wavefront aberrations. To demonstrate this approach, the statistical properties of refractive error maps are investigated. Closed-form expressions are derived for the probability density function (PDF) and its statistical moments for the general case of rotationally-symmetric aberrations. A closed-form expression for a PDF for a general non-rotationally symmetric wavefront aberration is difficult to derive. However, for specific cases, such as astigmatism, a closed-form expression of the PDF can be obtained. Further, interpretation of the distribution of the refractive error map as well as its moments is provided for a range of wavefront aberrations measured in real eyes. These are evaluated using a kernel density and sample moments estimators. It is concluded that the refractive error domain allows non-functional analysis of wavefront aberrations based on simple statistics in the form of its sample moments. Clinicians may find this approach to wavefront analysis easier to interpret due to the clinical familiarity and intuitive appeal of refractive error maps.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis an investigation into theoretical models for formation and interaction of nanoparticles is presented. The work presented includes a literature review of current models followed by a series of five chapters of original research. This thesis has been submitted in partial fulfilment of the requirements for the degree of doctor of philosophy by publication and therefore each of the five chapters consist of a peer-reviewed journal article. The thesis is then concluded with a discussion of what has been achieved during the PhD candidature, the potential applications for this research and ways in which the research could be extended in the future. In this thesis we explore stochastic models pertaining to the interaction and evolution mechanisms of nanoparticles. In particular, we explore in depth the stochastic evaporation of molecules due to thermal activation and its ultimate effect on nanoparticles sizes and concentrations. Secondly, we analyse the thermal vibrations of nanoparticles suspended in a fluid and subject to standing oscillating drag forces (as would occur in a standing sound wave) and finally on lattice surfaces in the presence of high heat gradients. We have described in this thesis a number of new models for the description of multicompartment networks joined by a multiple, stochastically evaporating, links. The primary motivation for this work is in the description of thermal fragmentation in which multiple molecules holding parts of a carbonaceous nanoparticle may evaporate. Ultimately, these models predict the rate at which the network or aggregate fragments into smaller networks/aggregates and with what aggregate size distribution. The models are highly analytic and describe the fragmentation of a link holding multiple bonds using Markov processes that best describe different physical situations and these processes have been analysed using a number of mathematical methods. The fragmentation of the network/aggregate is then predicted using combinatorial arguments. Whilst there is some scepticism in the scientific community pertaining to the proposed mechanism of thermal fragmentation,we have presented compelling evidence in this thesis supporting the currently proposed mechanism and shown that our models can accurately match experimental results. This was achieved using a realistic simulation of the fragmentation of the fractal carbonaceous aggregate structure using our models. Furthermore, in this thesis a method of manipulation using acoustic standing waves is investigated. In our investigation we analysed the effect of frequency and particle size on the ability for the particle to be manipulated by means of a standing acoustic wave. In our results, we report the existence of a critical frequency for a particular particle size. This frequency is inversely proportional to the Stokes time of the particle in the fluid. We also find that for large frequencies the subtle Brownian motion of even larger particles plays a significant role in the efficacy of the manipulation. This is due to the decreasing size of the boundary layer between acoustic nodes. Our model utilises a multiple time scale approach to calculating the long term effects of the standing acoustic field on the particles that are interacting with the sound. These effects are then combined with the effects of Brownian motion in order to obtain a complete mathematical description of the particle dynamics in such acoustic fields. Finally, in this thesis, we develop a numerical routine for the description of "thermal tweezers". Currently, the technique of thermal tweezers is predominantly theoretical however there has been a handful of successful experiments which demonstrate the effect it practise. Thermal tweezers is the name given to the way in which particles can be easily manipulated on a lattice surface by careful selection of a heat distribution over the surface. Typically, the theoretical simulations of the effect can be rather time consuming with supercomputer facilities processing data over days or even weeks. Our alternative numerical method for the simulation of particle distributions pertaining to the thermal tweezers effect use the Fokker-Planck equation to derive a quick numerical method for the calculation of the effective diffusion constant as a result of the lattice and the temperature. We then use this diffusion constant and solve the diffusion equation numerically using the finite volume method. This saves the algorithm from calculating many individual particle trajectories since it is describes the flow of the probability distribution of particles in a continuous manner. The alternative method that is outlined in this thesis can produce a larger quantity of accurate results on a household PC in a matter of hours which is much better than was previously achieveable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Information Retrieval is an important albeit imperfect component of information technologies. A problem of insufficient diversity of retrieved documents is one of the primary issues studied in this research. This study shows that this problem leads to a decrease of precision and recall, traditional measures of information retrieval effectiveness. This thesis presents an adaptive IR system based on the theory of adaptive dual control. The aim of the approach is the optimization of retrieval precision after all feedback has been issued. This is done by increasing the diversity of retrieved documents. This study shows that the value of recall reflects this diversity. The Probability Ranking Principle is viewed in the literature as the “bedrock” of current probabilistic Information Retrieval theory. Neither the proposed approach nor other methods of diversification of retrieved documents from the literature conform to this principle. This study shows by counterexample that the Probability Ranking Principle does not in general lead to optimal precision in a search session with feedback (for which it may not have been designed but is actively used). Retrieval precision of the search session should be optimized with a multistage stochastic programming model to accomplish the aim. However, such models are computationally intractable. Therefore, approximate linear multistage stochastic programming models are derived in this study, where the multistage improvement of the probability distribution is modelled using the proposed feedback correctness method. The proposed optimization models are based on several assumptions, starting with the assumption that Information Retrieval is conducted in units of topics. The use of clusters is the primary reasons why a new method of probability estimation is proposed. The adaptive dual control of topic-based IR system was evaluated in a series of experiments conducted on the Reuters, Wikipedia and TREC collections of documents. The Wikipedia experiment revealed that the dual control feedback mechanism improves precision and S-recall when all the underlying assumptions are satisfied. In the TREC experiment, this feedback mechanism was compared to a state-of-the-art adaptive IR system based on BM-25 term weighting and the Rocchio relevance feedback algorithm. The baseline system exhibited better effectiveness than the cluster-based optimization model of ADTIR. The main reason for this was insufficient quality of the generated clusters in the TREC collection that violated the underlying assumption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automatic recognition of people is an active field of research with important forensic and security applications. In these applications, it is not always possible for the subject to be in close proximity to the system. Voice represents a human behavioural trait which can be used to recognise people in such situations. Automatic Speaker Verification (ASV) is the process of verifying a persons identity through the analysis of their speech and enables recognition of a subject at a distance over a telephone channel { wired or wireless. A significant amount of research has focussed on the application of Gaussian mixture model (GMM) techniques to speaker verification systems providing state-of-the-art performance. GMM's are a type of generative classifier trained to model the probability distribution of the features used to represent a speaker. Recently introduced to the field of ASV research is the support vector machine (SVM). An SVM is a discriminative classifier requiring examples from both positive and negative classes to train a speaker model. The SVM is based on margin maximisation whereby a hyperplane attempts to separate classes in a high dimensional space. SVMs applied to the task of speaker verification have shown high potential, particularly when used to complement current GMM-based techniques in hybrid systems. This work aims to improve the performance of ASV systems using novel and innovative SVM-based techniques. Research was divided into three main themes: session variability compensation for SVMs; unsupervised model adaptation; and impostor dataset selection. The first theme investigated the differences between the GMM and SVM domains for the modelling of session variability | an aspect crucial for robust speaker verification. Techniques developed to improve the robustness of GMMbased classification were shown to bring about similar benefits to discriminative SVM classification through their integration in the hybrid GMM mean supervector SVM classifier. Further, the domains for the modelling of session variation were contrasted to find a number of common factors, however, the SVM-domain consistently provided marginally better session variation compensation. Minimal complementary information was found between the techniques due to the similarities in how they achieved their objectives. The second theme saw the proposal of a novel model for the purpose of session variation compensation in ASV systems. Continuous progressive model adaptation attempts to improve speaker models by retraining them after exploiting all encountered test utterances during normal use of the system. The introduction of the weight-based factor analysis model provided significant performance improvements of over 60% in an unsupervised scenario. SVM-based classification was then integrated into the progressive system providing further benefits in performance over the GMM counterpart. Analysis demonstrated that SVMs also hold several beneficial characteristics to the task of unsupervised model adaptation prompting further research in the area. In pursuing the final theme, an innovative background dataset selection technique was developed. This technique selects the most appropriate subset of examples from a large and diverse set of candidate impostor observations for use as the SVM background by exploiting the SVM training process. This selection was performed on a per-observation basis so as to overcome the shortcoming of the traditional heuristic-based approach to dataset selection. Results demonstrate the approach to provide performance improvements over both the use of the complete candidate dataset and the best heuristically-selected dataset whilst being only a fraction of the size. The refined dataset was also shown to generalise well to unseen corpora and be highly applicable to the selection of impostor cohorts required in alternate techniques for speaker verification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reliability analysis has several important engineering applications. Designers and operators of equipment are often interested in the probability of the equipment operating successfully to a given age - this probability is known as the equipment's reliability at that age. Reliability information is also important to those charged with maintaining an item of equipment, as it enables them to model and evaluate alternative maintenance policies for the equipment. In each case, information on failures and survivals of a typical sample of items is used to estimate the required probabilities as a function of the item's age, this process being one of many applications of the statistical techniques known as distribution fitting. In most engineering applications, the estimation procedure must deal with samples containing survivors (suspensions or censorings); this thesis focuses on several graphical estimation methods that are widely used for analysing such samples. Although these methods have been current for many years, they share a common shortcoming: none of them is continuously sensitive to changes in the ages of the suspensions, and we show that the resulting reliability estimates are therefore more pessimistic than necessary. We use a simple example to show that the existing graphical methods take no account of any service recorded by suspensions beyond their respective previous failures, and that this behaviour is inconsistent with one's intuitive expectations. In the course of this thesis, we demonstrate that the existing methods are only justified under restricted conditions. We present several improved methods and demonstrate that each of them overcomes the problem described above, while reducing to one of the existing methods where this is justified. Each of the improved methods thus provides a realistic set of reliability estimates for general (unrestricted) censored samples. Several related variations on these improved methods are also presented and justified. - i

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maintenance activities in a large-scale engineering system are usually scheduled according to the lifetimes of various components in order to ensure the overall reliability of the system. Lifetimes of components can be deduced by the corresponding probability distributions with parameters estimated from past failure data. While failure data of the components is not always readily available, the engineers have to be content with the primitive information from the manufacturers only, such as the mean and standard deviation of lifetime, to plan for the maintenance activities. In this paper, the moment-based piecewise polynomial model (MPPM) are proposed to estimate the parameters of the reliability probability distribution of the products when only the mean and standard deviation of the product lifetime are known. This method employs a group of polynomial functions to estimate the two parameters of the Weibull Distribution according to the mathematical relationship between the shape parameter of two-parameters Weibull Distribution and the ratio of mean and standard deviation. Tests are carried out to evaluate the validity and accuracy of the proposed methods with discussions on its suitability of applications. The proposed method is particularly useful for reliability-critical systems, such as railway and power systems, in which the maintenance activities are scheduled according to the expected lifetimes of the system components.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article introduces a “pseudo classical” notion of modelling non-separability. This form of non-separability can be viewed as lying between separability and quantum-like non-separability. Non-separability is formalized in terms of the non-factorizabilty of the underlying joint probability distribution. A decision criterium for determining the non-factorizability of the joint distribution is related to determining the rank of a matrix as well as another approach based on the chi-square-goodness-of-fit test. This pseudo-classical notion of non-separability is discussed in terms of quantum games and concept combinations in human cognition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a robust stochastic framework for the incorporation of visual observations into conventional estimation, data fusion, navigation and control algorithms. The representation combines Isomap, a non-linear dimensionality reduction algorithm, with expectation maximization, a statistical learning scheme. The joint probability distribution of this representation is computed offline based on existing training data. The training phase of the algorithm results in a nonlinear and non-Gaussian likelihood model of natural features conditioned on the underlying visual states. This generative model can be used online to instantiate likelihoods corresponding to observed visual features in real-time. The instantiated likelihoods are expressed as a Gaussian mixture model and are conveniently integrated within existing non-linear filtering algorithms. Example applications based on real visual data from heterogenous, unstructured environments demonstrate the versatility of the generative models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a novel probabilistic approach to incorporating odometric information into appearance-based SLAM systems, without performing metric map construction or calculating relative feature geometry. The proposed system, dubbed Continuous Appearance-based Trajectory SLAM (CAT-SLAM), represents location as a probability distribution along a trajectory, and represents appearance continuously over the trajectory rather than at discrete locations. The distribution is evaluated using a Rao-Blackwellised particle filter, which weights particles based on local appearance and odometric similarity and explicitly models both the likelihood of revisiting previous locations and visiting new locations. A modified resampling scheme counters particle deprivation and allows loop closure updates to be performed in constant time regardless of map size. We compare the performance of CAT-SLAM to FAB-MAP (an appearance-only SLAM algorithm) in an outdoor environment, demonstrating a threefold increase in the number of correct loop closures detected by CAT-SLAM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stochastic simulation algorithm was introduced by Gillespie and in a different form by Kurtz. There have been many attempts at accelerating the algorithm without deviating from the behavior of the simulated system. The crux of the explicit τ-leaping procedure is the use of Poisson random variables to approximate the number of occurrences of each type of reaction event during a carefully selected time period, τ. This method is acceptable providing the leap condition, that no propensity function changes “significantly” during any time-step, is met. Using this method there is a possibility that species numbers can, artificially, become negative. Several recent papers have demonstrated methods that avoid this situation. One such method classifies, as critical, those reactions in danger of sending species populations negative. At most, one of these critical reactions is allowed to occur in the next time-step. We argue that the criticality of a reactant species and its dependent reaction channels should be related to the probability of the species number becoming negative. This way only reactions that, if fired, produce a high probability of driving a reactant population negative are labeled critical. The number of firings of more reaction channels can be approximated using Poisson random variables thus speeding up the simulation while maintaining the accuracy. In implementing this revised method of criticality selection we make use of the probability distribution from which the random variable describing the change in species number is drawn. We give several numerical examples to demonstrate the effectiveness of our new method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a robust filtering problem for uncertain discrete-time, homogeneous, first-order, finite-state hidden Markov models (HMMs). The class of uncertain HMMs considered is described by a conditional relative entropy constraint on measures perturbed from a nominal regular conditional probability distribution given the previous posterior state distribution and the latest measurement. Under this class of perturbations, a robust infinite horizon filtering problem is first formulated as a constrained optimization problem before being transformed via variational results into an unconstrained optimization problem; the latter can be elegantly solved using a risk-sensitive information-state based filtering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work examines the effect of landmark placement on the efficiency and accuracy of risk-bounded searches over probabilistic costmaps for mobile robot path planning. In previous work, risk-bounded searches were shown to offer in excess of 70% efficiency increases over normal heuristic search methods. The technique relies on precomputing distance estimates to landmarks which are then used to produce probability distributions over exact heuristics for use in heuristic searches such as A* and D*. The location and number of these landmarks therefore influence greatly the efficiency of the search and the quality of the risk bounds. Here four new methods of selecting landmarks for risk based search are evaluated. Results are shown which demonstrate that landmark selection needs to take into account the centrality of the landmark, and that diminishing rewards are obtained from using large numbers of landmarks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pipelines are important lifeline facilities spread over a large area and they generally encounter a range of seismic hazards and different soil conditions. The seismic response of a buried segmented pipe depends on various parameters such as the type of buried pipe material and joints, end restraint conditions, soil characteristics, burial depths, and earthquake ground motion, etc. This study highlights the effect of the variation of geotechnical properties of the surrounding soil on seismic response of a buried pipeline. The variations of the properties of the surrounding soil along the pipe are described by sampling them from predefined probability distribution. The soil-pipe interaction model is developed in OpenSEES. Nonlinear earthquake time-history analysis is performed to study the effect of soil parameters variability on the response of pipeline. Based on the results, it is found that uncertainty in soil parameters may result in significant response variability of the pipeline.