179 resultados para pressure drop

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady state conditions and unsteady conditions by assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding 2D cross-section structural models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed hyperelastic, homogeneous, isotropic and incompressible. The analysis showed that the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by cross-section models. Pressure drop across the stenosis was found to be much higher than shear stress. Therefore, pressure may be the more important mechanical trigger for plaque rupture other than shear stress, although shear stress is closely related to plaque formation and progression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Coronary tortuosity (CT) is a common coronary angiographic finding. Whether CT leads to an apparent reduction in coronary pressure distal to the tortuous segment of the coronary artery is still unknown. The purpose of this study is to determine the impact of CT on coronary pressure distribution by numerical simulation. Methods: 21 idealized models were created to investigate the influence of coronary tortuosity angle (CTA) and coronary tortuosity number (CTN) on coronary pressure distribution. A 2D incompressible Newtonian flow was assumed and the computational simulation was performed using finite volume method. CTA of 30°, 60°, 90°, 120° and CTN of 0, 1, 2, 3, 4, 5 were discussed under both steady and pulsatile conditions, and the changes of outlet pressure and inlet velocity during the cardiac cycle were considered. Results: Coronary pressure distribution was affected both by CTA and CTN. We found that the pressure drop between the start and the end of the CT segment decreased with CTA, and the length of the CT segment also declined with CTA. An increase in CTN resulted in an increase in the pressure drop. Conclusions: Compared to no-CT, CT can results in more decrease of coronary blood pressure in dependence on the severity of tortuosity and severe CT may cause myocardial ischemia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to evaluate the mechanical triggers that may cause plaque rupture. Wall shear stress (WSS) and pressure gradient are the direct mechanical forces acting on the plaque in a stenotic artery. Their influence on plaque stability is thought to be controversial. This study used a physiologically realistic, pulsatile flow, two-dimensional, cine phase-contrast MRI sequence in a patient with a 70% carotid stenosis. Instead of considering the full patient-specific carotid bifurcation derived from MRI, only the plaque region has been modelled by means of the idealised flow model. WSS reached a local maximum just distal to the stenosis followed by a negative local minimum. A pressure drop across the stenosis was found which varied significantly during systole and diastole. The ratio of the relative importance of WSS and pressure was assessed and was found to be less than 0.07% for all time phases, even at the throat of the stenosis. In conclusion, although the local high WSS at the stenosis may damage the endothelium and fissure plaque, the magnitude of WSS is small compared with the overall loading on plaque. Therefore, pressure may be the main mechanical trigger for plaque rupture and risk stratification using stress analysis of plaque stability may only need to consider the pressure effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experts in injection molding often refer to previous solutions to find a mold design similar to the current mold and use previous successful molding process parameters with intuitive adjustment and modification as a start for the new molding application. This approach saves a substantial amount of time and cost in experimental based corrective actions which are required in order to reach optimum molding conditions. A Case-Based Reasoning (CBR) System can perform the same task by retrieving a similar case which is applied to the new case from the case library and uses the modification rules to adapt a solution to the new case. Therefore, a CBR System can simulate human e~pertise in injection molding process design. This research is aimed at developing an interactive Hybrid Expert System to reduce expert dependency needed on the production floor. The Hybrid Expert System (HES) is comprised of CBR, flow analysis, post-processor and trouble shooting systems. The HES can provide the first set of operating parameters in order to achieve moldability condition and producing moldings free of stress cracks and warpage. In this work C++ programming language is used to implement the expert system. The Case-Based Reasoning sub-system is constructed to derive the optimum magnitude of process parameters in the cavity. Toward this end the Flow Analysis sub-system is employed to calculate the pressure drop and temperature difference in the feed system to determine the required magnitude of parameters at the nozzle. The Post-Processor is implemented to convert the molding parameters to machine setting parameters. The parameters designed by HES are implemented using the injection molding machine. In the presence of any molding defect, a trouble shooting subsystem can determine which combination of process parameters must be changed iii during the process to deal with possible variations. Constraints in relation to the application of this HES are as follows. - flow length (L) constraint: 40 mm < L < I 00 mm, - flow thickness (Th) constraint: -flow type: - material types: I mm < Th < 4 mm, unidirectional flow, High Impact Polystyrene (HIPS) and Acrylic. In order to test the HES, experiments were conducted and satisfactory results were obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hydrodynamic behaviour of a novel flat plate photocatalytic reactor for water treatment is investigated using CFD code FLUENT. The reactor consists of a reactive section that features negligible pressure drop and uniform illumination of the photocatalyst to ensure enhanced photocatalytic efficiency. The numerical simulations allowed the identification of several design issues in the original reactor, which include extensive boundary layer separation near the photocatalyst support and regions of flow recirculation that render a significant portion of the reactive area. The simulations reveal that this issue could be addressed by selecting the appropriate inlet positions and configurations. This modification can cause minimal pressure drop across the reactive zone and achieves significant uniformization of the tested pollutant on the photocatalyst surface. The influence of roughness elements type has also been studied with a view to identify their role on the distribution of pollutant concentration on the photocatalyst surface. The results presented here indicate that the flow and pollutant concentration field strongly depend on the geometric parameters and flow conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper offers numerical modelling of a waste heat recovery system. A thin layer of metal foam is attached to a cold plate to absorb heat from hot gases leaving the system. The heat transferred from the exhaust gas is then transferred to a cold liquid flowing in a secondary loop. Two different foam PPI (Pores Per Inch) values are examined over a range of fluid velocities. Numerical results are then compared to both experimental data and theoretical results available in the literature. Challenges in getting the simulation results to match those of the experiments are addressed and discussed in detail. In particular, interface boundary conditions specified between a porous layer and a fluid layer are investigated. While physically one expects much lower fluid velocity in the pores compared to that of free flow, capturing this sharp gradient at the interface can add to the difficulties of numerical simulation. The existing models in the literature are modified by considering the pressure gradient inside and outside the foam. Comparisons against the numerical modelling are presented. Finally, based on experimentally-validated numerical results, thermo-hydraulic performance of foam heat exchangers as waste heat recovery units is discussed with the main goal of reducing the excess pressure drop and maximising the amount of heat that can be recovered from the hot gas stream.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A numerical time-dependent model of an active magnetic regenerator (AMR) was developed for cooling in the kilowatt range. Earlier numerical models have been mostly developed for cooling power in the 0.4 kW range. In contrast, this paper reports the applicability of magnetic refrigeration to the 50 kW range. A packed bed active magnetic regenerator was modelled and the influence of parameters such as geometry and operating parameters were studied for different geometries. The pressure drop for AMR bed length and particle diameter was also studied. High cooling power and coefficient of performance (COP) were achieved by optimization of the diameter of the magnetocaloric powder particles and operating frequency. The optimum operating conditions of the AMR for a cooling capacity of 50 kW was determined for a temperature span of 15 K. The predicted coefficient of performance (COP) was found to be ∼6, making it an attractive alternative to vapour compression systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gross pollutant traps (GPT) are designed to capture and retain visible street waste, such as anthropogenic litter and organic matter. Blocked screens, low/high downstream tidal waters and flows operating above/below the intended design limits can hamper the operations of a stormwater GPT. Under these adverse operational conditions, a recently developed GPT was evaluated. Capture and retention experiments were conducted on a 50% scale model with partially and fully blocked screens, placed inside a hydraulic flume. Flows were established through the model via an upstream channel-inlet configuration. Floatable, partially buoyant, neutrally buoyant and sinkable spheres were released into the GPT and monitored at the outlet. These experiments were repeated with a pipe-inlet configured GPT. The key findings from the experiments were of practical significance to the design, operation and maintenance of GPTs. These involved an optimum range of screen blockages and a potentially improved inlet design for efficient gross pollutant capture/retention operations. For example, the outlet data showed that the capture and retention efficiency deteriorated rapidly when the screens were fully blocked. The low pressure drop across the retaining screens and the reduced inlet flow velocities were either insufficient to mobilise the gross pollutants, or the GPT became congested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical results are presented to investigate the performance of a partly-filled porous heat exchanger for waste heat recovery units. A parametric study was conducted to investigate the effects of inlet velocity and porous block height on the pressure drop of the heat exchanger. The focus of this work is on modelling the interface of a porous and non-porous region. As such, numerical simulation of the problem is conducted along with hot-wire measurements to better understand the physics of the problem. Results from the two sources are then compared to existing theoretical predictions available in the literature which are unable to predict the existence of two separation regions before and after the porous block. More interestingly, a non-uniform interface velocity was observed along the streamwise direction based on both numerical and experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymethacrylate monoliths, specifically poly(glycidyl methacrylate-co-ethylene dimethacrylate) or poly(GMA-co-EDMA) monoliths, are a new generation of chromatographic supports and are significantly different from conventional particle-based adsorbents, membranes, and other monolithic supports for biomolecule purification. Similar to other monoliths, polymethacrylate monoliths possess large pores which allow convective flow of mobile phase and result in high flow rates at reduced pressure drop, unlike particulate supports. The simplicity of the adsorbent synthesis, pH resistance, and the ease and flexibility of tailoring their pore size to that of the target biomolecule are the key properties which differentiate polymethacrylate monoliths from other monoliths. Polymethacrylate monoliths are endowed with reactive epoxy groups for easy functionalization (with anion-exchange, hydrophobic, and affinity ligands) and high ligand retention. In this review, the structure and performance of polymethacrylate monoliths for chromatographic purification of biomolecules are evaluated and compared to those of other supports. The development and use of polymethacrylate monoliths for research applications have grown rapidly in recent times and have enabled the achievement of high through-put biomolecule purification on semi-preparative and preparative scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extent of exothermicity associated with the construction of large-volume methacrylate monolithic columns has somewhat obstructed the realisation of large-scale rapid biomolecule purification especially for plasmid-based products which have proven to herald future trends in biotechnology. A novel synthesis technique via a heat expulsion mechanism was employed to prepare a 40 mL methacrylate monolith with a homogeneous radial pore structure along its thickness. Radial temperature gradient was recorded to be only 1.8 °C. Maximum radial temperature recorded at the centre of the monolith was 62.3 °C, which was only 2.3 °C higher than the actual polymerisation temperature. Pore characterisation of the monolithic polymer showed unimodal pore size distributions at different radial positions with an identical modal pore size of 400 nm. Chromatographic characterisation of the polymer after functionalisation with amino groups displayed a persistent dynamic binding capacity of 15.5 mg of plasmid DNA/mL. The maximum pressure drop recorded was only 0.12 MPa at a flow rate of 10 mL/min. The polymer demonstrated rapid separation ability by fractionating Escherichia coli DH5α-pUC19 clarified lysate in only 3 min after loading. The plasmid sample collected after the fast purification process was tested to be a homogeneous supercoiled plasmid with DNA electrophoresis and restriction analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study explored the effects of the double counter twisted tapes on heat transfer and fluid friction characteristics in a heat exchanger tube. The double counter twisted tapes were used as counter-swirl flow generators in the test section. The experiments were performed with double counter twisted tapes of four different twist ratios (y = 1.95, 3.85, 5.92 and 7.75) using air as the testing fluid in a circular tube turbulent flow regime where the Reynolds number was varied from 6950 to 50,050. The experimental results demonstrated that the Nusselt number, friction factor and thermal enhancement efficiency were increased with decreasing twist ratio. The results also revealed that the heat transfer rate in the tube fitted with double counter twisted tape was significantly increased with corresponding increase in pressure drop. In the range of the present work, heat transfer rate and friction factor were obtained to be around 60 to 240% and 91 to 286% higher than those of the plain tube values, respectively. The maximum thermal enhancement efficiency of 1.34 was achieved by the use of double counter twisted tapes at constant blower power. In addition, the empirical correlations for the Nusselt number, friction factor and thermal enhancement efficiency were also developed, based on the experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This project provides a steppingstone to comprehend the mechanisms that govern particulate fouling in metal foam heat exchangers. The method is based on development of an advanced Computational Fluid Dynamics model in addition to performing analytical validation. This novel method allows an engineer to better optimize heat exchanger designs, thereby mitigating fouling, reducing energy consumption caused by fouling, economize capital expenditure on heat exchanger maintenance, and reduce operation downtime. The robust model leads to the establishment of an alternative heat exchanger configuration that has lower pressure drop and particulate deposition propensity.