213 resultados para prediction formula
em Queensland University of Technology - ePrints Archive
Resumo:
The pull-out force of some outer walls against other inner walls in multi-walled carbon nanotubes (MWCNTs) was systematically studied by molecular mechanics simulations. The obtained results reveal that the pull-out force is proportional to the square of the diameter of the immediate outer wall on the sliding interface, which highlights the primary contribution of the capped section of MWCNT to the pull-out force. A simple empirical formula was proposed based on the numerical results to predict the pull-out force for an arbitrary pull-out in a given MWCNT directly from the diameter of the immediate outer wall on the sliding interface. Moreover, tensile tests for MWCNTs with and without acid-treatment were performed with a nanomanipulator inside a vacuum chamber of a scanning electron microscope (SEM) to validate the present empirical formula. It was found that the theoretical pull-out forces agree with the present and some previous experimental results very well.
Resumo:
Previous studies have enabled exact prediction of probabilities of identity-by-descent (IBD) in randommating populations for a few loci (up to four or so), with extension to more using approximate regression methods. Here we present a precise predictor of multiple-locus IBD using simple formulas based on exact results for two loci. In particular, the probability of non-IBD X ABC at each of ordered loci A, B, and C can be well approximated by XABC = XABXBC/XB and generalizes to X123. . .k = X12X23. . .Xk-1,k/ Xk-2, where X is the probability of non-IBD at each locus. Predictions from this chain rule are very precise with population bottlenecks and migration, but are rather poorer in the presence of mutation. From these coefficients, the probabilities of multilocus IBD and non-IBD can also be computed for genomic regions as functions of population size, time, and map distances. An approximate but simple recurrence formula is also developed, which generally is less accurate than the chain rule but is more robust with mutation. Used together with the chain rule it leads to explicit equations for non-IBD in a region. The results can be applied to detection of quantitative trait loci (QTL) by computing the probability of IBD at candidate loci in terms of identity-by-state at neighboring markers.