273 resultados para prediction error

em Queensland University of Technology - ePrints Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability to estimate the expected Remaining Useful Life (RUL) is critical to reduce maintenance costs, operational downtime and safety hazards. In most industries, reliability analysis is based on the Reliability Centred Maintenance (RCM) and lifetime distribution models. In these models, the lifetime of an asset is estimated using failure time data; however, statistically sufficient failure time data are often difficult to attain in practice due to the fixed time-based replacement and the small population of identical assets. When condition indicator data are available in addition to failure time data, one of the alternate approaches to the traditional reliability models is the Condition-Based Maintenance (CBM). The covariate-based hazard modelling is one of CBM approaches. There are a number of covariate-based hazard models; however, little study has been conducted to evaluate the performance of these models in asset life prediction using various condition indicators and data availability. This paper reviews two covariate-based hazard models, Proportional Hazard Model (PHM) and Proportional Covariate Model (PCM). To assess these models’ performance, the expected RUL is compared to the actual RUL. Outcomes demonstrate that both models achieve convincingly good results in RUL prediction; however, PCM has smaller absolute prediction error. In addition, PHM shows over-smoothing tendency compared to PCM in sudden changes of condition data. Moreover, the case studies show PCM is not being biased in the case of small sample size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim – To develop and assess the predictive capabilities of a statistical model that relates routinely collected Trauma Injury Severity Score (TRISS) variables to length of hospital stay (LOS) in survivors of traumatic injury. Method – Retrospective cohort study of adults who sustained a serious traumatic injury, and who survived until discharge from Auckland City, Middlemore, Waikato, or North Shore Hospitals between 2002 and 2006. Cubic-root transformed LOS was analysed using two-level mixed-effects regression models. Results – 1498 eligible patients were identified, 1446 (97%) injured from a blunt mechanism and 52 (3%) from a penetrating mechanism. For blunt mechanism trauma, 1096 (76%) were male, average age was 37 years (range: 15-94 years), and LOS and TRISS score information was available for 1362 patients. Spearman’s correlation and the median absolute prediction error between LOS and the original TRISS model was ρ=0.31 and 10.8 days, respectively, and between LOS and the final multivariable two-level mixed-effects regression model was ρ=0.38 and 6.0 days, respectively. Insufficient data were available for the analysis of penetrating mechanism models. Conclusions – Neither the original TRISS model nor the refined model has sufficient ability to accurately or reliably predict LOS. Additional predictor variables for LOS and other indicators for morbidity need to be considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This review explores the question whether chemometrics methods enhance the performance of electroanalytical methods. Electroanalysis has long benefited from the well-established techniques such as potentiometric titrations, polarography and voltammetry, and the more novel ones such as electronic tongues and noses, which have enlarged the scope of applications. The electroanalytical methods have been improved with the application of chemometrics for simultaneous quantitative prediction of analytes or qualitative resolution of complex overlapping responses. Typical methods include partial least squares (PLS), artificial neural networks (ANNs), and multiple curve resolution methods (MCR-ALS, N-PLS and PARAFAC). This review aims to provide the practising analyst with a broad guide to electroanalytical applications supported by chemometrics. In this context, after a general consideration of the use of a number of electroanalytical techniques with the aid of chemometrics methods, several overviews follow with each one focusing on an important field of application such as food, pharmaceuticals, pesticides and the environment. The growth of chemometrics in conjunction with electronic tongue and nose sensors is highlighted, and this is followed by an overview of the use of chemometrics for the resolution of complicated profiles for qualitative identification of analytes, especially with the use of the MCR-ALS methodology. Finally, the performance of electroanalytical methods is compared with that of some spectrophotometric procedures on the basis of figures-of-merit. This showed that electroanalytical methods can perform as well as the spectrophotometric ones. PLS-1 appears to be the method of practical choice if the %relative prediction error of not, vert, similar±10% is acceptable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monitoring Internet traffic is critical in order to acquire a good understanding of threats to computer and network security and in designing efficient computer security systems. Researchers and network administrators have applied several approaches to monitoring traffic for malicious content. These techniques include monitoring network components, aggregating IDS alerts, and monitoring unused IP address spaces. Another method for monitoring and analyzing malicious traffic, which has been widely tried and accepted, is the use of honeypots. Honeypots are very valuable security resources for gathering artefacts associated with a variety of Internet attack activities. As honeypots run no production services, any contact with them is considered potentially malicious or suspicious by definition. This unique characteristic of the honeypot reduces the amount of collected traffic and makes it a more valuable source of information than other existing techniques. Currently, there is insufficient research in the honeypot data analysis field. To date, most of the work on honeypots has been devoted to the design of new honeypots or optimizing the current ones. Approaches for analyzing data collected from honeypots, especially low-interaction honeypots, are presently immature, while analysis techniques are manual and focus mainly on identifying existing attacks. This research addresses the need for developing more advanced techniques for analyzing Internet traffic data collected from low-interaction honeypots. We believe that characterizing honeypot traffic will improve the security of networks and, if the honeypot data is handled in time, give early signs of new vulnerabilities or breakouts of new automated malicious codes, such as worms. The outcomes of this research include: • Identification of repeated use of attack tools and attack processes through grouping activities that exhibit similar packet inter-arrival time distributions using the cliquing algorithm; • Application of principal component analysis to detect the structure of attackers’ activities present in low-interaction honeypots and to visualize attackers’ behaviors; • Detection of new attacks in low-interaction honeypot traffic through the use of the principal component’s residual space and the square prediction error statistic; • Real-time detection of new attacks using recursive principal component analysis; • A proof of concept implementation for honeypot traffic analysis and real time monitoring.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study investigated the influence of traffic and land use parameters on metal build-up on urban road surfaces. Mathematical relationships were developed to predict metals originating from fuel combustion and vehicle wear. The analysis undertaken found that nickel and chromium originate from exhaust emissions, lead, copper and zinc from vehicle wear, cadmium from both exhaust and wear and manganese from geogenic sources. Land use does not demonstrate a clear pattern in relation to the metal build-up process, though its inherent characteristics such as traffic activities exert influence. The equation derived for fuel related metal load has high cross-validated coefficient of determination (Q2) and low Standard Error of Cross-Validation (SECV) values indicates that the model is reliable, while the equation derived for wear-related metal load has low Q2 and high SECV values suggesting its use only in preliminary investigations. Relative Prediction Error values for both equations are considered to be well within the error limits for a complex system such as an urban road surface. These equations will be beneficial for developing reliable stormwater treatment strategies in urban areas which specifically focus on mitigation of metal pollution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protocols for bioassessment often relate changes in summary metrics that describe aspects of biotic assemblage structure and function to environmental stress. Biotic assessment using multimetric indices now forms the basis for setting regulatory standards for stream quality and a range of other goals related to water resource management in the USA and elsewhere. Biotic metrics are typically interpreted with reference to the expected natural state to evaluate whether a site is degraded. It is critical that natural variation in biotic metrics along environmental gradients is adequately accounted for, in order to quantify human disturbance-induced change. A common approach used in the IBI is to examine scatter plots of variation in a given metric along a single stream size surrogate and a fit a line (drawn by eye) to form the upper bound, and hence define the maximum likely value of a given metric in a site of a given environmental characteristic (termed the 'maximum species richness line' - MSRL). In this paper we examine whether the use of a single environmental descriptor and the MSRL is appropriate for defining the reference condition for a biotic metric (fish species richness) and for detecting human disturbance gradients in rivers of south-eastern Queensland, Australia. We compare the accuracy and precision of the MSRL approach based on single environmental predictors, with three regression-based prediction methods (Simple Linear Regression, Generalised Linear Modelling and Regression Tree modelling) that use (either singly or in combination) a set of landscape and local scale environmental variables as predictors of species richness. We compared the frequency of classification errors from each method against set biocriteria and contrast the ability of each method to accurately reflect human disturbance gradients at a large set of test sites. The results of this study suggest that the MSRL based upon variation in a single environmental descriptor could not accurately predict species richness at minimally disturbed sites when compared with SLR's based on equivalent environmental variables. Regression-based modelling incorporating multiple environmental variables as predictors more accurately explained natural variation in species richness than did simple models using single environmental predictors. Prediction error arising from the MSRL was substantially higher than for the regression methods and led to an increased frequency of Type I errors (incorrectly classing a site as disturbed). We suggest that problems with the MSRL arise from the inherent scoring procedure used and that it is limited to predicting variation in the dependent variable along a single environmental gradient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To identify and categorize complex stimuli such as familiar objects or speech, the human brain integrates information that is abstracted at multiple levels from its sensory inputs. Using cross-modal priming for spoken words and sounds, this functional magnetic resonance imaging study identified 3 distinct classes of visuoauditory incongruency effects: visuoauditory incongruency effects were selective for 1) spoken words in the left superior temporal sulcus (STS), 2) environmental sounds in the left angular gyrus (AG), and 3) both words and sounds in the lateral and medial prefrontal cortices (IFS/mPFC). From a cognitive perspective, these incongruency effects suggest that prior visual information influences the neural processes underlying speech and sound recognition at multiple levels, with the STS being involved in phonological, AG in semantic, and mPFC/IFS in higher conceptual processing. In terms of neural mechanisms, effective connectivity analyses (dynamic causal modeling) suggest that these incongruency effects may emerge via greater bottom-up effects from early auditory regions to intermediate multisensory integration areas (i.e., STS and AG). This is consistent with a predictive coding perspective on hierarchical Bayesian inference in the cortex where the domain of the prediction error (phonological vs. semantic) determines its regional expression (middle temporal gyrus/STS vs. AG/intraparietal sulcus).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents new schemes for recursive estimation of the state transition probabilities for hidden Markov models (HMM's) via extended least squares (ELS) and recursive state prediction error (RSPE) methods. Local convergence analysis for the proposed RSPE algorithm is shown using the ordinary differential equation (ODE) approach developed for the more familiar recursive output prediction error (RPE) methods. The presented scheme converges and is relatively well conditioned compared with the ...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper new online adaptive hidden Markov model (HMM) state estimation schemes are developed, based on extended least squares (ELS) concepts and recursive prediction error (RPE) methods. The best of the new schemes exploit the idempotent nature of Markov chains and work with a least squares prediction error index, using a posterior estimates, more suited to Markov models then traditionally used in identification of linear systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the preliminary results in establishing a strategy for predicting Zenith Tropospheric Delay (ZTD) and relative ZTD (rZTD) between Continuous Operating Reference Stations (CORS) in near real-time. It is anticipated that the predicted ZTD or rZTD can assist the network-based Real-Time Kinematic (RTK) performance over long inter-station distances, ultimately, enabling a cost effective method of delivering precise positioning services to sparsely populated regional areas, such as Queensland. This research firstly investigates two ZTD solutions: 1) the post-processed IGS ZTD solution and 2) the near Real-Time ZTD solution. The near Real-Time solution is obtained through the GNSS processing software package (Bernese) that has been deployed for this project. The predictability of the near Real-Time Bernese solution is analyzed and compared to the post-processed IGS solution where it acts as the benchmark solution. The predictability analyses were conducted with various prediction time of 15, 30, 45, and 60 minutes to determine the error with respect to timeliness. The predictability of ZTD and relative ZTD is determined (or characterized) by using the previously estimated ZTD as the predicted ZTD of current epoch. This research has shown that both the ZTD and relative ZTD predicted errors are random in nature; the STD grows from a few millimeters to sub-centimeters while the predicted delay interval ranges from 15 to 60 minutes. Additionally, the RZTD predictability shows very little dependency on the length of tested baselines of up to 1000 kilometers. Finally, the comparison of near Real-Time Bernese solution with IGS solution has shown a slight degradation in the prediction accuracy. The less accurate NRT solution has an STD error of 1cm within the delay of 50 minutes. However, some larger errors of up to 10cm are observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The measurement error model is a well established statistical method for regression problems in medical sciences, although rarely used in ecological studies. While the situations in which it is appropriate may be less common in ecology, there are instances in which there may be benefits in its use for prediction and estimation of parameters of interest. We have chosen to explore this topic using a conditional independence model in a Bayesian framework using a Gibbs sampler, as this gives a great deal of flexibility, allowing us to analyse a number of different models without losing generality. Using simulations and two examples, we show how the conditional independence model can be used in ecology, and when it is appropriate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commonwealth Scientific and Industrial Research Organization (CSIRO) has recently conducted a technology demonstration of a novel fixed wireless broadband access system in rural Australia. The system is based on multi user multiple-input multiple-output orthogonal frequency division multiplexing (MU-MIMO-OFDM). It demonstrated an uplink of six simultaneous users with distances ranging from 10 m to 8.5 km from a central tower, achieving 20 bits s/Hz spectrum efficiency. This paper reports on the analysis of channel capacity and bit error probability simulation based on the measured MUMIMO-OFDM channels obtained during the demonstration, and their comparison with the results based on channels simulated by a novel geometric optics based channel model suitable for MU-MIMO OFDM in rural areas. Despite its simplicity, the model was found to predict channel capacity and bit error rate probability accurately for a typical MU-MIMO-OFDM deployment scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To compare measures of fat-free mass (FFM) by three different bioelectrical impedance analysis (BIA) devices and to assess the agreement between three different equations validated in older adult and/or overweight populations. Design: Cross-sectional study. Setting: Orthopaedics ward of Brisbane public hospital, Australia. Participants: Twenty-two overweight, older Australians (72 yr ± 6.4, BMI 34 kg/m2 ± 5.5) with knee osteoarthritis. Measurements: Body composition was measured using three BIA devices: Tanita 300-GS (foot-to-foot), Impedimed DF50 (hand-to-foot) and Impedimed SFB7 (bioelectrical impedance spectroscopy (BIS)). Three equations for predicting FFM were selected based on their ability to be applied to an older adult and/ or overweight population. Impedance values were extracted from the hand-to-foot BIA device and included in the equations to estimate FFM. Results: The mean FFM measured by BIS (57.6 kg ± 9.1) differed significantly from those measured by foot-to-foot (54.6 kg ± 8.7) and hand-to-foot BIA (53.2 kg ± 10.5) (P < 0.001). The mean ± SD FFM predicted by three equations using raw data from hand-to-foot BIA were 54.7 kg ± 8.9, 54.7 kg ± 7.9 and 52.9 kg ± 11.05 respectively. These results did not differ from the FFM predicted by the hand-to-foot device (F = 2.66, P = 0.118). Conclusions: Our results suggest that foot-to-foot and hand-to-foot BIA may be used interchangeably in overweight older adults at the group level but due to the large limits of agreement may lead to unacceptable error in individuals. There was no difference between the three prediction equations however these results should be confirmed within a larger sample and against a reference standard.