15 resultados para predation

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim Large-scale patterns linking energy availability, biological productivity and diversity form a central focus of ecology. Despite evidence that the activity and abundance of animals may be limited by climatic variables associated with regional biological productivity (e.g. mean annual precipitation and annual actual evapotranspiration), it is unclear whether plant–granivore interactions are themselves influenced by these climatic factors across broad spatial extents. We evaluated whether climatic conditions that are known to alter the abundance and activity of granivorous animals also affect rates of seed removal. Location Eleven sites across temperate North America. Methods We used a common protocol to assess the removal of the same seed species (Avena sativa) over a 2-day period. Model selection via the Akaike information criterion was used to determine a set of candidate binomial generalized linear mixed models that evaluated the relationship between local climatic data and post-dispersal seed predation. Results Annual actual evapotranspiration was the single best predictor of the proportion of seeds removed. Annual actual evapotranspiration and mean annual precipitation were both positively related to mean seed removal and were included in four and three of the top five models, respectively. Annual temperature range was also positively related to seed removal and was an explanatory variable in three of the top four models. Main conclusions Our work provides the first evidence that energy and precipitation, which are known to affect consumer abundance and activity, also translate to strong, predictable patterns of seed predation across a continent. More generally, these findings suggest that future changes in temperature and precipitation could have widespread consequences for plant species composition in grasslands, through impacts on plant recruitment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Female greater wax moths Galleria mellonella display by wing fanning in response to bursts of ultrasonic calls produced by males. The temporal and spectral characteristics of these calls show some similarities with the echolocation calls of bats that emit frequency-modulated (FM) signals. Female G. mellonella therefore need to distinguish between the attractive signals of male conspecifics, which may lead to mating opportunities, and similar sounds made by predatory bats. We therefore predicted that (1) females would display in response to playbacks of male calls; (2) females would not display in response to playbacks of the calls of echolocating bats (we used the calls of Daubenton's bat Myotis daubentonii as representative of a typical FM echolocating bat); and (3) when presented with male calls and bat calls during the same time block, females would display more when perceived predation risk was lower. We manipulated predation risk in two ways. First, we varied the intensity of bat calls to represent a nearby (high risk) or distant (low risk) bat. Second, we played back calls of bats searching for prey (low risk) and attacking prey (high risk). All predictions were supported, suggesting that female G. mellonella are able to distinguish conspecific male mating calls from bat calls, and that they modify display rate in relation to predation risk. The mechanism (s) by which the moths separate the calls of bat and moth must involve temporal cues. Bat and moth signals differ considerably in duration, and differences in duration could be encoded by the moth's nervous system and used in discrimination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The black rat (Rattus rattus) has been shown to be the primary species responsible for causing significant crop losses within the Australian macadamia industry. This species success within macadamia orchards is directly related to the flexibility expressed in its foraging behaviour. In this paper a conceptual foraging model is presented which proposes that the utilisation of resources by rodents within various components of the system is related not only to their relative abundance, but also to predator avoidance behaviour. Nut removal from high predation risk habitats during periods of low resource abundance in low risk compartments of the system is considered an essential behaviour that allows high rodent densities to be maintained throughout the year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rodenticide use in agriculture can lead to the secondary poisoning of avian predators. Currently the Australian sugarcane industry has two rodenticides, Racumin® and Rattoff®, available for in-crop use but, like many agricultural industries, it lacks an ecologically-based method of determining the potential secondary poisoning risk the use of these rodenticides poses to avian predators. The material presented in this thesis addresses this by: a. determining where predator/prey interactions take place in sugar producing districts; b. quantifying the amount of rodenticide available to avian predators and the probability of encounter; and c. developing a stochastic model that allows secondary poisoning risk under various rodenticide application scenarios to be investigated. Results demonstrate that predator/prey interactions are highly constrained by environmental structure. Rodents used crops that provided high levels of canopy cover and therefore predator protection and poorly utilised open canopy areas. In contrast, raptors over-utilised areas with low canopy cover and low rodent densities, but which provided high accessibility to prey. Given this pattern of habitat use, and that industry baiting protocols preclude rodenticide application in open canopy crops, these results indicate that secondary poisoning can only occur if poisoned rodents leave closed canopy crops and become available for predation in open canopy areas. Results further demonstrate that after in-crop rodenticide application, only a small proportion of rodents available in open areas are poisoned and that these rodents carry low levels of toxicant. Coupled with the low level of rodenticide use in the sugar industry, the high toxic threshold raptors have to these toxicants and the low probability of encountering poisoned rodents, results indicate that the risk of secondary poisoning events occurring is minimal. A stochastic model was developed to investigate the effect of manipulating factors that might influence secondary poisoning hazard in a sugarcane agro-ecosystem. These simulations further suggest that in all but extreme scenarios, the risk of secondary poisoning is also minimal. Collectively, these studies demonstrate that secondary poisoning of avian predators associated with the use of the currently available rodenticides in Australian sugar producing districts is minimal. Further, the ecologically-based method of assessing secondary poisoning risk developed in this thesis has broader applications in other agricultural systems where rodenticide use may pose risks to avian predators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of upper and lower respiratory tract infections. In more recent years there has been increasing evidence to suggest a link between C. pneumoniae and chronic diseases in humans, including atherosclerosis, stroke and Alzheimer’s disease. C. pneumoniae human strains show little genetic variation, indicating that the human-derived strain originated from a common ancestor in the recent past. Despite extensive information on the genetics and morphology processes of the human strain, knowledge concerning many other hosts (including marsupials, amphibians, reptiles and equines) remains virtually unexplored. The koala (Phascolarctos cinereus) is a native Australian marsupial under threat due to habitat loss, predation and disease. Koalas are very susceptible to chlamydial infections, most commonly affecting the conjunctiva, urogenital tract and/or respiratory tract. To address this gap in the literature, the present study (i) provides a detailed description of the morphologic and genomic architecture of the C. pneumoniae koala (and human) strain, and shows that the koala strain is microscopically, developmentally and genetically distinct from the C. pneumoniae human strain, and (ii) examines the genetic relationship of geographically diverse C. pneumoniae isolates from human, marsupial, amphibian, reptilian and equine hosts, and identifies two distinct lineages that have arisen from animal-to-human cross species transmissions. Chapter One of this thesis explores the scientific problem and aims of this study, while Chapter Two provides a detailed literature review of the background in this field of work. Chapter Three, the first results chapter, describes the morphology and developmental stages of C. pneumoniae koala isolate LPCoLN, as revealed by fluorescence and transmission electron microscopy. The profile of this isolate, when cultured in HEp-2 human epithelial cells, was quite different to the human AR39 isolate. Koala LPCoLN inclusions were larger; the elementary bodies did not have the characteristic pear-shaped appearance, and the developmental cycle was completed within a shorter period of time (as confirmed by quantitative real-time PCR). These in vitro findings might reflect biological differences between koala LPCoLN and human AR39 in vivo. Chapter Four describes the complete genome sequence of the koala respiratory pathogen, C. pneumoniae LPCoLN. This is the first animal isolate of C. pneumoniae to be fully-sequenced. The genome sequence provides new insights into genomic ‘plasticity’ (organisation), evolution and biology of koala LPCoLN, relative to four complete C. pneumoniae human genomes (AR39, CWL029, J138 and TW183). Koala LPCoLN contains a plasmid that is not shared with any of the human isolates, there is evidence of gene loss in nucleotide salvage pathways, and there are 10 hot spot genomic regions of variation that were previously not identified in the C. pneumoniae human genomes. Sequence (partial-length) from a second, independent, wild koala isolate (EBB) at several gene loci confirmed that the koala LPCoLN isolate was representative of a koala C. pneumoniae strain. The combined sequence data provides evidence that the C. pneumoniae animal (koala LPCoLN) genome is ancestral to the C. pneumoniae human genomes and that human infections may have originated from zoonotic infections. Chapter Five examines key genome components of the five C. pneumoniae genomes in more detail. This analysis reveals genomic features that are shared by and/or contribute to the broad ecological adaptability and evolution of C. pneumoniae. This analysis resulted in the identification of 65 gene sequences for further analysis of intraspecific variation, and revealed some interesting differences, including fragmentation, truncation and gene decay (loss of redundant ancestral traits). This study provides valuable insights into metabolic diversity, adaptation and evolution of C. pneumoniae. Chapter Six utilises a subset of 23 target genes identified from the previous genomic comparisons and makes a significant contribution to our understanding of genetic variability among C. pneumoniae human (11) and animal (6 amphibian, 5 reptilian, 1 equine and 7 marsupial hosts) isolates. It has been shown that the animal isolates are genetically diverse, unlike the human isolates that are virtually clonal. More convincing evidence that C. pneumoniae originated in animals and recently (in the last few hundred thousand years) crossed host species to infect humans is provided in this study. It is proposed that two animal-to-human cross species events have occurred in the context of the results, one evident by the nearly clonal human genotype circulating in the world today, and the other by a more animal-like genotype apparent in Indigenous Australians. Taken together, these data indicate that the C. pneumoniae koala LPCoLN isolate has morphologic and genomic characteristics that are distinct from the human isolates. These differences may affect the survival and activity of the C. pneumoniae koala pathogen in its natural host, in vivo. This study, by utilising the genetic diversity of C. pneumoniae, identified new genetic markers for distinguishing human and animal isolates. However, not all C. pneumoniae isolates were genetically diverse; in fact, several isolates were highly conserved, if not identical in sequence (i.e. Australian marsupials) emphasising that at some stage in the evolution of this pathogen, there has been an adaptation/s to a particular host, providing some stability in the genome. The outcomes of this study by experimental and bioinformatic approaches have significantly enhanced our knowledge of the biology of this pathogen and will advance opportunities for the investigation of novel vaccine targets, antimicrobial therapy, or blocking of pathogenic pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neonate Lepidoptera are confronted with the daunting task of establishing themselves on a food plant. The factors relevant to this process need to be considered at spatial and temporal scales relevant to the larva and not the investigator. Neonates have to cope with an array of plant surface characters as well as internal characters once the integument is ruptured. These characters, as well as microclimatic conditions, vary within and between plant modules and interact with larval feeding requirements, strongly affecting movement behavior, which may be extensive even for such small organisms. In addition to these factors, there is an array of predators, pathogens, and parasitoids with which first instars must contend. Not surprisingly, mortality in neonates is high but can vary widely. Experimental and manipulative studies, as well as detailed observations of the animal, are vital if the subtle interaction of factors responsible for this high and variable mortality are to be understood. These studies are essential for an understanding of theories linking female oviposition behavior with larval survival, plant defense theory, and population dynamics, as well as modern crop resistance breeding programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The opening phrase of the title is from Charles Darwin’s notebooks (Schweber 1977). It is a double reminder, firstly that mainstream evolutionary theory is not just about describing nature but is particularly looking for mechanisms or ‘causes’, and secondly, that there will usually be several causes affecting any particular outcome. The second part of the title is our concern at the almost universal rejection of the idea that biological mechanisms are sufficient for macroevolutionary changes, thus rejecting a cornerstone of Darwinian evolutionary theory. Our primary aim here is to consider ways of making it easier to develop and to test hypotheses about evolution. Formalizing hypotheses can help generate tests. In an absolute sense, some of the discussion by scientists about evolution is little better than the lack of reasoning used by those advocating intelligent design. Our discussion here is in a Popperian framework where science is defined by that area of study where it is possible, in principle, to find evidence against hypotheses – they are in principle falsifiable. However, with time, the boundaries of science keep expanding. In the past, some aspects of evolution were outside the current boundaries of falsifiable science, but increasingly new techniques and ideas are expanding the boundaries of science and it is appropriate to re-examine some topics. It often appears that over the last few decades there has been an increasingly strong assumption to look first (and only) for a physical cause. This decision is virtually never formally discussed, just an assumption is made that some physical factor ‘drives’ evolution. It is necessary to examine our assumptions much more carefully. What is meant by physical factors ‘driving’ evolution, or what is an ‘explosive radiation’. Our discussion focuses on two of the six mass extinctions, the fifth being events in the Late Cretaceous, and the sixth starting at least 50,000 years ago (and is ongoing). Cretaceous/Tertiary boundary; the rise of birds and mammals. We have had a long-term interest (Cooper and Penny 1997) in designing tests to help evaluate whether the processes of microevolution are sufficient to explain macroevolution. The real challenge is to formulate hypotheses in a testable way. For example the numbers of lineages of birds and mammals that survive from the Cretaceous to the present is one test. Our first estimate was 22 for birds, and current work is tending to increase this value. This still does not consider lineages that survived into the Tertiary, and then went extinct later. Our initial suggestion was probably too narrow in that it lumped four models from Penny and Phillips (2004) into one model. This reduction is too simplistic in that we need to know about survival and ecological and morphological divergences during the Late Cretaceous, and whether Crown groups of avian or mammalian orders may have existed back into the Cretaceous. More recently (Penny and Phillips 2004) we have formalized hypotheses about dinosaurs and pterosaurs, with the prediction that interactions between mammals (and groundfeeding birds) and dinosaurs would be most likely to affect the smallest dinosaurs, and similarly interactions between birds and pterosaurs would particularly affect the smaller pterosaurs. There is now evidence for both classes of interactions, with the smallest dinosaurs and pterosaurs declining first, as predicted. Thus, testable models are now possible. Mass extinction number six: human impacts. On a broad scale, there is a good correlation between time of human arrival, and increased extinctions (Hurles et al. 2003; Martin 2005; Figure 1). However, it is necessary to distinguish different time scales (Penny 2005) and on a finer scale there are still large numbers of possibilities. In Hurles et al. (2003) we mentioned habitat modification (including the use of Geogenes III July 2006 31 fire), introduced plants and animals (including kiore) in addition to direct predation (the ‘overkill’ hypothesis). We need also to consider prey switching that occurs in early human societies, as evidenced by the results of Wragg (1995) on the middens of different ages on Henderson Island in the Pitcairn group. In addition, the presence of human-wary or humanadapted animals will affect the distribution in the subfossil record. A better understanding of human impacts world-wide, in conjunction with pre-scientific knowledge will make it easier to discuss the issues by removing ‘blame’. While continued spontaneous generation was accepted universally, there was the expectation that animals continued to reappear. New Zealand is one of the very best locations in the world to study many of these issues. Apart from the marine fossil record, some human impact events are extremely recent and the remains less disrupted by time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evolutionary theory predicts that herbivorous insects should lay eggs on plants in a way that reflects the suitability of each plant species for larval development. Empirical studies, however, often fail to find any relationship between an adult insect’s choice of host–plant and offspring fitness, and in such cases, it is generally assumed that other ‘missing’ factors (e.g. predation, host–plant abundance, learning and adult feeding sites) must be contributing to overall host suitability. Here, I consider an alternative theory – that a fitness cost inherent in the olfactory mechanism could constrain the evolution of insect host selection. I begin by reviewing current knowledge of odour processing in the insect antennal lobe with the aid of a simple schematic: the aim being to explain the workings of this mechanism to scientists who do not have prior knowledge in this field. I then use the schematic to explore how an insect’s perception of host and non-host odours is governed by a set of processing rules, or algorithm. Under the assumptions of this mechanistic view, the perception of every plant odour is interrelated, and seemingly bad host choices can still arise as part of an overall adaptive behavioural strategy. I discuss how an understanding of mechanism can improve the interpretation of theoretical and empirical studies in insect behaviour and evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low- and high-frequency components of a rustling sound, created when prey (freshly killed frog) was jerkily pulled on dry and wet sandy floors and asbestos, were recorded and played back to individual Indian false vampire bats (Megaderma lyra). Megaderma lyra responded with flight toward the speakers and captured dead frogs, that were kept as reward. The spectral peaks were at 8.6, 7.1 and 6.8 kHz for the low-frequency components of the sounds created at the dry, asbestos and wet floors, respectively. The spectral peaks for the high-frequency sounds created on the respective floors were at 36.8,27.2 and 23.3 kHz. The sound from the dry floor was more intense than that of from the other two substrata. Prey movements that generated sonic or ultrasonic sounds were both sufficient and necessary for the bats to detect and capture prey. The number of successful prey captures was significantly greater for the dry floor sound, especially to its high-frequency components. Bat-responses were low to the wet floor and moderate to the asbestos floor sounds. The bats did not respond to the sound of unrecorded parts of the tape. Even though the bats flew toward the speakers when the prey generated sounds were played back and captured the dead frogs we cannot rule out the possibility of M. lyra using echolocation to localize prey. However, the study indicates that prey that move on dry sandy floor are more vulnerable to predation by M. lyra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The New Zealand Threat Classification System (NZTCS) is a national system used to assess the risk of extinction faced by New Zealand plants, animals and fungi. The system is specifically designed to be relevant to New Zealand's unusual ecological and geographic conditions. We undertook a re-evaluation of the status of seven bat taxa based on our knowledge of New Zealand bats using revised NZTCS criteria. Five taxa were listed as Threatened or At Risk: one as Nationally Critical (long-tailed bat Chalinolobus tuberculatus ‘South Island’), one as Nationally Endangered (southern lesser short-tailed bat Mystacina tuberculata tuberculata), two as Nationally Vulnerable (long-tailed bat ‘North Island’ and northern lesser short-tailed bat M. t. aupourica) and one as Declining (central lesser short-tailed bat M. t. rhyacobia). One taxon was assessed as Data Deficient (greater short-tailed bat M. robusta) and one (little red flying fox Pteropus scapulatus) as Vagrant. We suspect declines result primarily from predation and competition from introduced mammals, habitat degradation, and disturbance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A successful translocation involves many complex factors, including a genetically appropriate source population that can sustain harvest, social and governmental support, assessment of disease transmission risk and a release site with appropriately secure habitat that can support population establishment and persistance. This information is typically discussed during staturory approval processes and can take considerable time. However, following approval, for translocations of most fauna, the initial critical step involves the inherently stressful process of capture, holding, transportation and release. This process is unpredictable and novel, and is especially challenging for wild animals when they are confined in close proximity to conspecifics and humans. In contrast, captive-reared animals have to cope with the unfamiliar challenges of finding food and shelter, along with coping with competition and predation. Little has been written in the scientific literature about the translocation process. This is unsurprising because this process has usually been the realm of skilled practioners, often with animal husbandry backgrounds, rather than research scientists. Highly skilled intuition, observation and the translocation practioner's equivalent of a 'green thumb' often guides the way. However, theory and experimentation, particularly on the effects of stress, is available and this work is invaluable for a successful translocation. Here, we provide a brief description of the translocation process, and discussion of what stress is and how it can be managed. We then provide practical guidelines for the successful translocation of invertebrates, lizards, turtles, passerine birds, marsupials and bats, using examples from Australia and New Zealand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Claims for mid-Holocene Aboriginal occupation at the shell matrix site of Wurdukanhan, Mornington Island, Gulf of Carpentaria, Australia, are reassessed through an analysis of the excavated assemblage coupled with new surveys and an extensive dating program. Memmott et al. (2006, pp. 38, 39) reported basal ages of c.5000–5500 years from Wurdukanhan as 'the oldest date yet obtained for any archaeological site on the coast of the southern Gulf of Carpentaria' and used these dates to argue for 'a relatively lengthy occupation since at least the mid-Holocene'. If substantiated, with the exception of western Torres Strait, these claims make Mornington Island the only offshore island used across northern Australia in the mid-Holocene where it is conventionally thought that Aboriginal people only (re)colonised islands after sea-level maximum was achieved after the mid-Holocene. Our analysis of Wurdukanhan demonstrates high shellfish taxa diversity, high rates of natural shell predation and high densities of foraminifera throughout the deposit demonstrating a natural origin for the assemblage. Results are considered in the context of other dated shell matrix sites in the area and a geomorphological model for landscape development of the Sandalwood River catchment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temporal and environmental variation in vocal activity can provide information on avian behaviour and call function not available to short-term experimental studies. Intersexual differences in this variation can provide insight into selection effects. Yet factors influencing vocal behaviour have not been assessed in many birds, even those monitored by acoustic methods. This applies to the New Zealand kiwi (Apterygidae), for which call censuses are used extensively in conservation monitoring, yet which have poorly understood acoustic ecology. We investigated little spotted kiwi Apteryx owenii vocal behaviour over 3 yr, measuring influences on vocal activity in both sexes from time of night, season, weather conditions and lunar cycle. We tested hypotheses that call rate variation reflects call function, foraging efficiency, historic predation risk and variability in sound transmission, and that there are inter-sexual differences in call function. Significant seasonal variation showed that vocalisations were important in kiwi reproduction, and inter-sexual synchronisation of call rates indicated that contact, pair-bonding or resource defence were key functions. All weather variables significantly affected call rates, with elevated calling during increased humidity and ground moisture indicating a relation between vocal activity and foraging conditions. A significant decrease in calling activity on cloudy nights, combined with no moonlight effect, suggests an impact of light pollution in this species. These influences on vocal activity provide insight into kiwi call function, have direct consequences for conservation monitoring of kiwi, and have wider implications in understanding vocal behaviour in a range of nocturnal birds

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural mortality of marine invertebrates is often very high in the early life history stages and decreases in later stages. The possible size-dependent mortality of juvenile banana prawns, P. merguiensis (2-15 mm carapace length) in the Gulf of Carpentaria was investigated. The analysis was based on the data collected at 2-weekly intervals by beam trawls at four sites over a period of six years (between September 1986 and March 1992). It was assumed that mortality was a parametric function of size, rather than a constant. Another complication in estimating mortality for juvenile banana prawns is that a significant proportion of the population emigrates from the study area each year. This effect was accounted for by incorporating the size-frequency pattern of the emigrants in the analysis. Both the extra parameter in the model required to describe the size dependence of mortality, and that used to account for emigration were found to be significantly different from zero, and the instantaneous mortality rate declined from 0.89 week(-1) for 2 mm prawns to 0.02 week(-1) for 15 mm prawns.