50 resultados para planar antenna

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconfigurable antennas capable of radiating in only specific desired directions increase system functionality in applications like direction finding and beam steering. This paper presents the design simulation, fabrication and measurement of a horizontally polarized, direction reconfigurable Vivaldi antenna, designed for the lower-band UWB (2-6 GHz). This design employs eight circularly distributed independent Vivaldi antennas with a common port, electronically controlled by PIN diodes acting as RF switches. Experimental results show that the reconfigurable antenna has a bandwidth of 4 GHz (2-6 GHz), with 5 dB gain in the desired direction and capable of steering over the 360° range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antennas are a necessary and critical component of communications and radar systems, but their inability to adjust to new operating scenarios can sometimes limit the system performance. Reconfigurable antennas capable of radiating in only specific desired directions can ameliorate these restrictions and help to achieve increased functionality in applications like direction finding and beam steering. This paper presents the design simulation, fabrication and measurement of a wide-band, horizontally polarized, direction reconfigurable microstrip antenna operating at 2.45 GHz. The design employs a central horizontally polarized omnidirectional active element surrounded by electronically reconfigurable parasitic microstrip elements, controlled by PIN diodes acting as RF switches. Experimental results show that the reconfigurable antenna has a bandwidth of 40% (2-3 GHz), with 3 dB gain in the desired direction and capable of steering over the 360° range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modified microstrip-fed planar monopole antenna with open circuited coupled line is presented in this paper. The operational bandwidth of the proposed antenna covers the 2.4 GHz ISM band (2.42-2.48 GHz) and the 5 GHz WLAN band (5 GHz to 6 GHz). The radiating elements occupy a small area of 23×8 mm2. The Finite Difference Time Domain method is used to predict the input impedance of the antenna. The calculated return loss shows very good agreement with measured data. Reasonable antenna gain is observed across the operating band. The measured radiation patterns are similar to those of a simple monopole antenna.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary form only given. Geometric simplicity, efficiency and polarization purity make slot antenna arrays ideal solutions for many radar, communications and navigation applications, especially when high power, light weight and limited scan volume are priorities. Resonant arrays of longitudinal slots have a slot spacing of one-half guide wavelength at the design frequency, so that the slots are located at the standing wave peaks. Planar arrays are implemented using a number of rectangular waveguides (branch line guides), arranged side-by-side, while waveguides main lines located behind and at right angles to the branch lines excite the radiating waveguides via centered-inclined coupling slots. Planar slotted waveguide arrays radiate broadside beams and all radiators are designed to be in phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An element spacing of less than half a wavelength introduces strong mutual coupling between the ports of compact antenna arrays. The strong coupling causes significant system performance degradation. A decoupling network may compensate for the mutual coupling. Alternatively, port decoupling can be achieved using a modal feed network. In response to an input signal at one of the input ports, this feed network excites the antenna elements in accordance with one of the eigenvectors of the array scattering parameter matrix. In this paper, a novel 4-element monopole array is described. The feed network of the array is implemented as a planar ring-type circuit in stripline with four coupled line sections. The new configuration offers a significant reduction in size, resulting in a very compact array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates some interesting connections between the hitherto disparate fields of mobile robot navigation and image-based visual servoing. A planar formulation of the well-known image-based visual servoing method leads to a bearing-only navigation system that requires no explicit localization and directly yields desired velocity. The well known benefits of image-based visual servoing such as robustness apply also to the planar case. Simulation results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates some interesting connections between the hitherto disparate fields of mobile robot navigation and image-based visual servoing. A planar formulation of the well-known image-based visual servoing method leads to a bearing-only navigation system that requires no explicit localization and directly yields desired velocity. The well known benefits of image-based visual servoing such as robustness apply also to the planar case. Simulation results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new method for winding configuration in planar magnetic elements with more than two layers. It has been proven by 3D Finite Element method and mathematical modeling that this suggested configuration results in reduction of the equivalent capacitive coupling in the planar inductor

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small element spacing in compact arrays results in strong mutual coupling between array elements. Performance degradation associated with the strong coupling can be avoided through the introduction of a decoupling network consisting of interconnected reactive elements. We present a systematic design procedure for decoupling networks of symmetrical arrays with more than three elements and characterized by circulant scattering parameter matrices. The elements of the decoupling network are obtained through repeated decoupling of the characteristic eigenmodes of the array, which allows the calculation of element values using closed-form expressions.