125 resultados para phylogenetic signal
em Queensland University of Technology - ePrints Archive
Resumo:
Resolving species relationships and confirming diagnostic morphological characters for insect clades that are highly plastic, and/or include morphologically cryptic species, is crucial for both academic and applied reasons. Within the true fly (Diptera) family Chironomidae, a most ubiquitous freshwater insect group, the genera CricotopusWulp, 1874 and ParatrichocladiusSantos-Abreu, 1918 have long been taxonomically confusing. Indeed, until recently the Australian fauna had been examined in just two unpublished theses: most species were known by informal manuscript names only, with no concept of relationships. Understanding species limits, and the associated ecology and evolution, is essential to address taxonomic sufficiency in biomonitoring surveys. Immature stages are collected routinely, but tolerance is generalized at the genus level, despite marked variation among species. Here, we explored this issue using a multilocus molecular phylogenetic approach, including the standard mitochondrial barcode region, and tested explicitly for phylogenetic signal in ecological tolerance of species. Additionally, we addressed biogeographical patterns by conducting Bayesian divergence time estimation. We sampled all but one of the now recognized Australian Cricotopus species and tested monophyly using representatives from other austral and Asian locations. Cricotopus is revealed as paraphyletic by the inclusion of a nested monophyletic Paratrichocladius, with in-group diversification beginning in the Eocene. Previous morphological species concepts are largely corroborated, but some additional cryptic diversity is revealed. No significant relationship was observed between the phylogenetic position of a species and its ecology, implying either that tolerance to deleterious environmental impacts is a convergent trait among many Cricotopus species or that sensitive and restricted taxa have diversified into more narrow niches from a widely tolerant ancestor.
Resumo:
Despite recent methodological advances in inferring the time-scale of biological evolution from molecular data, the fundamental question of whether our substitution models are sufficiently well specified to accurately estimate branch-lengths has received little attention. I examine this implicit assumption of all molecular dating methods, on a vertebrate mitochondrial protein-coding dataset. Comparison with analyses in which the data are RY-coded (AG → R; CT → Y) suggests that even rates-across-sites maximum likelihood greatly under-compensates for multiple substitutions among the standard (ACGT) NT-coded data, which has been subject to greater phylogenetic signal erosion. Accordingly, the fossil record indicates that branch-lengths inferred from the NT-coded data translate into divergence time overestimates when calibrated from deeper in the tree. Intriguingly, RY-coding led to the opposite result. The underlying NT and RY substitution model misspecifications likely relate respectively to “hidden” rate heterogeneity and changes in substitution processes across the tree, for which I provide simulated examples. Given the magnitude of the inferred molecular dating errors, branch-length estimation biases may partly explain current conflicts with some palaeontological dating estimates.
Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus)
Resumo:
Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine-detailed molecular marker for epidemiological analysis appears justified, the tarP and ORF663 genes also appear to be valuable markers of phylogenetic or biogeographic divisions at the C. pecorum intra-species level. This research has significant implications for future typing studies to understand the phylogeny, genetic diversity, and epidemiology of C. pecorum infections in the koala and other animal species.
Resumo:
The phylogenetic relationships of the beetle superfamily Tenebrionoidea are investigated using the most comprehensive genetic data set compiled to date. With ∼34,000 described species in approximately 1250 genera and 28 families, Tenebrionoidea represent one of the most diverse and species-rich superfamilies of beetles. The interfamilial relationships of the Tenebrionoidea are poorly known; previous morphological and molecular phylogenies recovered few well-supported and often conflicting relationships between families. Here we present a molecular phylogeny of Tenebrionoidea based on genes commonly used to resolve family and superfamily-level phylogenies of beetles (18S, 28S, 16S, 12S, tRNA Val and COI). The alignment spanned over 6.5 KB of DNA sequence and over 300 tenebrionoid genera from 24 of the 28 families were sampled. Maximum Likelihood and Bayesian analysis could not resolve deeper level divergences within the superfamily and very few relationships between families were supported. Increasing gene coverage in the alignment by removing taxa with missing data did not improve clade support but when rogue taxa were removed increased resolution was recovered. Investigation of signal strength suggested conflicting phylogenetic signal was present in the standard genes used for beetle phylogenetics, even when rogue taxa were removed. Our study of Tenebrionoidea highlights that even with relatively comprehensive taxon sampling within a lineage, this standard set of genes is unable to resolve relationships within this superfamily.