326 resultados para performance data

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a case study approach, this paper presents a robust methodology for assessing the compatibility of stormwater treatment performance data between two geographical regions in relation to a treatment system. The desktop analysis compared data derived from a field study undertaken in Florida, USA, with South East Queensland (SEQ) rainfall and pollutant characteristics. The analysis was based on the hypothesis that when transposing treatment performance information from one geographical region to another, detailed assessment of specific rainfall and stormwater quality parameters is required. Accordingly, characteristics of measured rainfall events and stormwater quality in the Florida study were compared with typical characteristics for SEQ. Rainfall events monitored in the Florida study were found to be similar to events that occur in SEQ in terms of their primary characteristics of depth, duration and intensity. Similarities in total suspended solids (TSS) and total nitrogen (TN) concentration ranges for Florida and SEQ suggest that TSS and TN removal performances would not be very different if the treatment system is installed in SEQ. However, further investigations are needed to evaluate the treatment performance of total phosphorus (TP). The methodology presented also allows comparison of other water quality parameters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The research on project learning has recognised the significance of knowledge transfer in project based organisations (PBOs). Effective knowledge transfer across projects avoids reinventions, enhances knowledge creation and saves lots of time that is crucial in project environment. In order to facilitate knowledge transfer, many PBOs have invested lots of financial and human resources to implement IT-based knowledge repository. However, some empirical studies found that employees would rather turn for knowledge to colleagues despite their ready access to IT-based knowledge repository. Therefore, it is apparent that social networks play a pivotal role in the knowledge transfer across projects. Some scholars attempt to explore the effect of network structure on knowledge transfer and performance, however, focused only on egocentric networks and the groups’ internal social networks. It has been found that the project’s external social network is also critical, in that the team members can not handle critical situations and accomplish the projects on time without the assistance and knowledge from external sources. To date, the influence of the structure of a project team’s internal and external social networks on project performance, and the interrelation between both networks are barely known. In order to obtain such knowledge, this paper explores the interrelation between the structure of a project team’s internal and external social networks, and their effect on the project team’s performance. Data is gathered through survey questionnaire distributed online to respondents. Collected data is analysed applying social network analysis (SNA) tools and SPSS. The theoretical contribution of this paper is the knowledge of the interrelation between the structure of a project team’s internal and external social networks and their influence on the project team’s performance. The practical contribution lies in the guideline to be proposed for constructing the structure of project team’s internal and external social networks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Agricultural production is one of the major industries in New Zealand and accounts for over 60% of all export trade. The farming industry comprises 70,000 entities ranging in size from small individual run farms to large corporate operations. The reliance of the New Zealand economy to the international rural sector has seen considerable volatility in the rural land markets over the past four decades, with significant shifts in rural land prices based on location, land use and underlying international rural commodity prices. With the increasing attention being paid to the rural sector, especially in relation to food production and bio-fuels, there has been an increasing corporate interest in rural land ownership in relatively low subsidised agricultural producing countries such as New Zealand and Australia. A factor that has limited this participation of institutional investors previously has been a lack of reliable and up-to-date investment performance data for this asset class. This paper is the initial starting phase in the development of a New Zealand South Island rural land investment performance index and covers the period 1990-2007. The research in this paper analyses all rural sales transactions in the South Island and develops a capital return index for rural property based on major rural property land use. Additional work on this index will cover both total return performance and geographic location.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cold-formed steel stud walls are a major component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of stud wall systems while past research showed contradicting results, for example, about the benefits of cavity insulation. This research was therefore conducted to improve the knowledge and understanding of the structural and thermal performance of cold-formed steel stud wall systems (both load bearing and non-load bearing) under fire conditions and to develop new improved stud wall systems including reliable and simple methods to predict their fire resistance rating. Full scale fire tests of cold-formed steel stud wall systems formed the basis of this research. This research proposed an innovative LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating. Hence fire tests included both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. A propane fired gas furnace was specially designed and constructed first. The furnace was designed to deliver heat in accordance with the standard time temperature curve as proposed by AS 1530.4 (SA, 2005). A compression loading frame capable of loading the individual studs of a full scale steel stud wall system was also designed and built for the load-bearing tests. Fire tests included comprehensive time-temperature measurements across the thickness and along the length of all the specimens using K type thermocouples. They also included the measurements of load-deformation characteristics of stud walls until failure. The first phase of fire tests included 15 small scale fire tests of gypsum plasterboards, and composite panels using different types of insulating material of varying thickness and density. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effect of interfaces between adjacent plasterboards on the thermal performance. Effects of insulations such as glass fibre, rock fibre and cellulose fibre were also determined while the tests provided important data relating to the temperature at which the fall off of external plasterboards occurred. In the second phase, nine small scale non-load bearing wall specimens were tested to investigate the thermal performance of conventional and innovative steel stud wall systems. Effects of single and multiple layers of plasterboards with and without vertical joints were investigated. The new composite panels were seen to offer greater thermal protection to the studs in comparison to the conventional panels. In the third phase of fire tests, nine full scale load bearing wall specimens were tested to study the thermal and structural performance of the load bearing wall assemblies. A full scale test was also conducted at ambient temperature. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided good explanations and supporting research data to overcome the incorrect industry assumptions about cavity insulation. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of stud walls and increased their fire resistance rating significantly. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. This research also included steady state tensile tests at ambient and elevated temperatures to address the lack of reliable mechanical properties for high grade cold-formed steels at elevated temperatures. Suitable predictive equations were developed for calculating the yield strength and elastic modulus at elevated temperatures. In summary, this research has developed comprehensive experimental thermal and structural performance data for both the conventional and the proposed non-load bearing and load bearing stud wall systems under fire conditions. Idealized hot flange temperature profiles have been developed for non-insulated, cavity insulated and externally insulated load bearing wall models along with suitable equations for predicting their failure times. A graphical method has also been proposed to predict the failure times (fire rating) of non-load bearing and load bearing walls under different load ratios. The results from this research are useful to both fire researchers and engineers working in this field. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF walls under fire conditions, and developed an innovative LSF wall system with increased fire rating. It has clearly demonstrated the detrimental effects of using cavity insulation, and has paved the way for Australian building industries to develop new wall panels with increased fire rating for commercial applications worldwide.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fire safety of buildings has been recognised as very important by the building industry and the community at large. Gypsum plasterboards are widely used to protect light gauge steel frame (LSF) walls all over the world. Gypsum contains free and chemically bound water in its crystal structure. Plasterboard also contains gypsum (CaSO4.2H2O) and calcium carbonate (CaCO3). The dehydration of gypsum and the decomposition of calcium carbonate absorb heat, and thus are able to protect LSF walls from fires. Kolarkar and Mahendran (2008) developed an innovative composite wall panel system, where the insulation was sandwiched between two plasterboards to improve the thermal and structural performance of LSF wall panels under fire conditions. In order to understand the performance of gypsum plasterboards and LSF wall panels under standard fire conditions, many experiments were conducted in the Fire Research Laboratory of Queensland University of Technology (Kolarkar, 2010). Fire tests were conducted on single, double and triple layers of Type X gypsum plasterboards and load bearing LSF wall panels under standard fire conditions. However, suitable numerical models have not been developed to investigate the thermal performance of LSF walls using the innovative composite panels under standard fire conditions. Continued reliance on expensive and time consuming fire tests is not acceptable. Therefore this research developed suitable numerical models to investigate the thermal performance of both plasterboard assemblies and load bearing LSF wall panels. SAFIR, a finite element program, was used to investigate the thermal performance of gypsum plasterboard assemblies and LSF wall panels under standard fire conditions. Appropriate values of important thermal properties were proposed for plasterboards and insulations based on laboratory tests, literature review and comparisons of finite element analysis results of small scale plasterboard assemblies from this research and corresponding experimental results from Kolarkar (2010). The important thermal properties (thermal conductivity, specific heat capacity and density) of gypsum plasterboard and insulation materials were proposed as functions of temperature and used in the numerical models of load bearing LSF wall panels. Using these thermal properties, the developed finite element models were able to accurately predict the time temperature profiles of plasterboard assemblies while they predicted them reasonably well for load bearing LSF wall systems despite the many complexities that are present in these LSF wall systems under fires. This thesis presents the details of the finite element models of plasterboard assemblies and load bearing LSF wall panels including those with the composite panels developed by Kolarkar and Mahendran (2008). It examines and compares the thermal performance of composite panels developed based on different insulating materials of varying densities and thicknesses based on 11 small scale tests, and makes suitable recommendations for improved fire performance of stud wall panels protected by these composite panels. It also presents the thermal performance data of LSF wall systems and demonstrates the superior performance of LSF wall systems using the composite panels. Using the developed finite element of models of LSF walls, this thesis has proposed new LSF wall systems with increased fire rating. The developed finite element models are particularly useful in comparing the thermal performance of different wall panel systems without time consuming and expensive fire tests.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New substation automation applications, such as sampled value process buses and synchrophasors, require sampling accuracy of 1 µs or better. The Precision Time Protocol (PTP), IEEE Std 1588, achieves this level of performance and integrates well into Ethernet based substation networks. This paper takes a systematic approach to the performance evaluation of commercially available PTP devices (grandmaster, slave, transparent and boundary clocks) from a variety of manufacturers. The ``error budget'' is set by the performance requirements of each application. The ``expenditure'' of this error budget by each component is valuable information for a system designer. The component information is used to design a synchronization system that meets the overall functional requirements. The quantitative performance data presented shows that this testing is effective and informative. Results from testing PTP performance in the presence of sampled value process bus traffic demonstrate the benefit of a ``bottom up'' component testing approach combined with ``top down'' system verification tests. A test method that uses a precision Ethernet capture card, rather than dedicated PTP test sets, to determine the Correction Field Error of transparent clocks is presented. This test is particularly relevant for highly loaded Ethernet networks with stringent timing requirements. The methods presented can be used for development purposes by manufacturers, or by system integrators for acceptance testing. A sampled value process bus was used as the test application for the systematic approach described in this paper. The test approach was applied, components were selected, and the system performance verified to meet the application's requirements. Systematic testing, as presented in this paper, is applicable to a range of industries that use, rather than develop, PTP for time transfer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Load bearing Light Gauge Steel Frame (LSF) walls made of cold-formed steel studs and tracks are commonly used in residential and commercial buildings. Fire safety of these walls is essential to minimize the damage caused by fire related accidents. Past investigations on the fire performance of load bearing LSF wall systems have been limited to LSF walls made of conventional lipped channel section studs. Although structurally efficient hollow flange steel sections are available in the building industry, they are not used as LSF wall studs due to the lack of fire performance data for such walls. The hollow flange sections have torsionally rigid hollow flanges that eliminate the occurrence of local and distortional buckling to an extent, thereby increasing their structural efficiency. The weaknesses of hollow flange sections such as lower lateral distortional buckling capacity are also eliminated when they are used as studs of LSF walls as the plasterboard restraints will prevent any lateral movement. Therefore hollow flange sections can be considered as structurally more efficient studs for use in LSF wall systems. This paper reports the full scale fire tests of LSF walls made of hollow flange section studs under standard fire conditions. The frames were made of 1.6 mm thick and 150 mm deep hollow flange section studs with two closed rectangular flanges of 45 mm width x 15 mm depth. Dual plasterboards were attached on both sides of the test wall panels. The load ratio was varied and the failure times, the lateral deflections and the axial displacements of the test walls were obtained. The failure behaviour of LSF walls made of hollow flange section studs was found to be different to that of LSF walls made of conventional lipped channel section studs. The results of these fire tests show that hollow flange section studs have a higher potential in being used in load bearing LSF Walls.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing Light gauge Steel Frame (LSF) wall systems made of 1.15 mm G500 steel studs and varying plasterboard and insulation configurations (cavity and external insulation) using full scale fire tests. Suitable finite element models of LSF walls were then developed and validated by comparing with test results. In this study, the validated finite element models of LSF wall panels subject to standard fire conditions were used in a detailed parametric study to investigate the effects of important parameters such as steel grade and thickness, plasterboard screw spacing, plasterboard lateral restraint, insulation materials and load ratio on their performance under standard fire conditions. Suitable equations were proposed to predict the time–temperature profiles of LSF wall studs with eight different plasterboard-insulation configurations, and used in the finite element analyses. Finite element parametric studies produced extensive fire performance data for the LSF wall panels in the form of load ratio versus time and critical hot flange (failure) temperature curves for eight wall configurations. This data demonstrated the superior fire performance of externally insulated LSF wall panels made of different steel grades and thicknesses. It also led to the development of a set of equations to predict the important relationship between the load ratio and the critical hot flange temperature of LSF wall studs. Finally this paper proposes a simplified method to predict the fire resistance rating of LSF walls based on the two proposed set of equations for the load ratio–hot flange temperature and the time–temperature relationships.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Light Gauge Steel Framing (LSF) walls made of cold-formed and thin-walled steel lipped channel studs with plasterboard linings on both sides are commonly used in commercial, industrial and residential buildings. However, there is limited data about their structural and thermal performances under fire conditions. Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing LSF wall systems. In this research a series of full scale fire tests was conducted first to evaluate the performance of LSF wall systems with eight different wall configurations under standard fire conditions. Finite element models of LSF walls were then developed, analysed under transient and steady state conditions, and validated using full scale fire tests. This paper presents the details of an investigation into the fire performance of LSF wall panels based on an extensive finite element analysis based parametric study. The LSF wall panels with eight different plasterboard-insulation configurations were considered under standard fire conditions. Effects of varying steel grades, steel thicknesses, screw spacing, plasterboard restraint, insulation materials and load ratio on the fire performance of LSF walls were investigated and the results of extensive fire performance data are presented in the form of load ratio versus time and critical hot flange (failure) temperature curves.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE Every health care sector including hospice/palliative care needs to systematically improve services using patient-defined outcomes. Data from the national Australian Palliative Care Outcomes Collaboration aims to define whether hospice/palliative care patients' outcomes and the consistency of these outcomes have improved in the last 3 years. METHODS Data were analysed by clinical phase (stable, unstable, deteriorating, terminal). Patient-level data included the Symptom Assessment Scale and the Palliative Care Problem Severity Score. Nationally collected point-of-care data were anchored for the period July-December 2008 and subsequently compared to this baseline in six 6-month reporting cycles for all services that submitted data in every time period (n = 30) using individual longitudinal multi-level random coefficient models. RESULTS Data were analysed for 19,747 patients (46 % female; 85 % cancer; 27,928 episodes of care; 65,463 phases). There were significant improvements across all domains (symptom control, family care, psychological and spiritual care) except pain. Simultaneously, the interquartile ranges decreased, jointly indicating that better and more consistent patient outcomes were being achieved. CONCLUSION These are the first national hospice/palliative care symptom control performance data to demonstrate improvements in clinical outcomes at a service level as a result of routine data collection and systematic feedback.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With Safe Design and Construction of Machinery, the author presents the results of empirical studies into this significant aspect of safety science in a very readable, well-structured format. The book contains 436 references, 17 tables, one figure and a comprehensive index. Liz Bluff addresses a complex and important, but often neglected domain in OHS – the safety of machinery – in a holistic and profound, yet evidence based analysis; with many applied cases from her studies, which make the book accessible and a pleasant lecture. Although research that led to this remarkable publication might have been primarily focused on the regulators, this book can be highly recommended to all OHS academics and practitioners. It provides an important contribution to the body of knowledge in OHS, and establishes one of the few Australian in-depth insights into the significance of machinery producers, rather than machinery users in the wider framework of risk management. The author bases this fresh perspective on the well-established European Machinery Safety guidelines, and grounds her mixed-methods research predominantly in qualitative analysis of motivation and knowledge, which eventually leads to specific safety outcomes. It should be noted that both European and Australian legal aspects are investigated and considered, as both equally apply to many machinery exporters. A detailed description of the research design and methods can be found in an appendix. Overall, the unique combination of quantitative safety performance data and qualitative analysis of safety behaviours form a valuable addition to the understanding of machinery safety. The author must be congratulated on making these complex relationships transparent to the reader through her meticulous inquiry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amphibian is an 10’00’’ musical work which explores new musical interfaces and approaches to hybridising performance practices from the popular music, electronic dance music and computer music traditions. The work is designed to be presented in a range of contexts associated with the electro-acoustic, popular and classical music traditions. The work is for two performers using two synchronised laptops, an electric guitar and a custom designed gestural interface for vocal performers - the e-Mic (Extended Mic-stand Interface Controller). This interface was developed by one of the co-authors, Donna Hewitt. The e-Mic allows a vocal performer to manipulate the voice in real time through the capture of physical gestures via an array of sensors - pressure, distance, tilt - along with ribbon controllers and an X-Y joystick microphone mount. Performance data are then sent to a computer, running audio-processing software, which is used to transform the audio signal from the microphone. In this work, data is also exchanged between performers via a local wireless network, allowing performers to work with shared data streams. The duo employs the gestural conventions of guitarist and singer (i.e. 'a band' in a popular music context), but transform these sounds and gestures into new digital music. The gestural language of popular music is deliberately subverted and taken into a new context. The piece thus explores the nexus between the sonic and performative practices of electro acoustic music and intelligent electronic dance music (‘idm’). This work was situated in the research fields of new musical interfacing, interaction design, experimental music composition and performance. The contexts in which the research was conducted were live musical performance and studio music production. The work investigated new methods for musical interfacing, performance data mapping, hybrid performance and compositional practices in electronic music. The research methodology was practice-led. New insights were gained from the iterative experimental workshopping of gestural inputs, musical data mapping, inter-performer data exchange, software patch design, data and audio processing chains. In respect of interfacing, there were innovations in the design and implementation of a novel sensor-based gestural interface for singers, the e-Mic, one of the only existing gestural controllers for singers. This work explored the compositional potential of sharing real time performance data between performers and deployed novel methods for inter-performer data exchange and mapping. As regards stylistic and performance innovation, the work explored and demonstrated an approach to the hybridisation of the gestural and sonic language of popular music with recent ‘post-digital’ approaches to laptop based experimental music The development of the work was supported by an Australia Council Grant. Research findings have been disseminated via a range of international conference publications, recordings, radio interviews (ABC Classic FM), broadcasts, and performances at international events and festivals. The work was curated into the major Australian international festival, Liquid Architecture, and was selected by an international music jury (through blind peer review) for presentation at the International Computer Music Conference in Belfast, N. Ireland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nodule is 19'54" musical work for two electronic music performers, two laptop computers and a custom built, sensor-based microphone controller - the e-Mic (Extended Mic-stand Interface Controller). This interface was developed by one of the co-authors, Donna Hewitt. The e-Mic allows a vocal performer to manipulate their voice in real time by capturing physical gestures via an array of sensors - pressure, distance, tilt – in addition to ribbon controllers and an X-Y joystick microphone mount. Performance data are then sent to a computer, running audio-processing software, which is used to transform the audio signal from the microphone in real time. The work seeks to explore the liminal space between the electro-acoustic music tradition and more recent developments in the electronic dance music tradition. It does so on both a performative (gestural) and compositional (sonic) level. Visually, the performance consists of a singer and a laptop performer, hybridising the gestural context of these traditions. On a sonic level, the work explores hybridity at deeper levels of the musical structure than simple bricolage or collage approaches. Hybridity is explored at the level of the sonic gesture (source material), in production (audio processing gestures), in performance gesture, and in approaches to the use of the frequency spectrum, pulse and meter. The work was designed to be performed in a range of contexts from concert halls, to clubs, to rock festivals, across a range of staging and production platforms. As a consequence, the work has been tested in a range of audience contexts, and has allowed the transportation of compositional and performance practices across traditional audience demographic boundaries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Executive Summary The objective of this report was to use the Sydney Opera House as a case study of the application of Building Information Modelling (BIM). The Sydney opera House is a complex, large building with very irregular building configuration, that makes it a challenging test. A number of key concerns are evident at SOH: • the building structure is complex, and building service systems - already the major cost of ongoing maintenance - are undergoing technology change, with new computer based services becoming increasingly important. • the current “documentation” of the facility is comprised of several independent systems, some overlapping and is inadequate to service current and future services required • the building has reached a milestone age in terms of the condition and maintainability of key public areas and service systems, functionality of spaces and longer term strategic management. • many business functions such as space or event management require up-to-date information of the facility that are currently inadequately delivered, expensive and time consuming to update and deliver to customers. • major building upgrades are being planned that will put considerable strain on existing Facilities Portfolio services, and their capacity to manage them effectively While some of these concerns are unique to the House, many will be common to larger commercial and institutional portfolios. The work described here supported a complementary task which sought to identify if a building information model – an integrated building database – could be created, that would support asset & facility management functions (see Sydney Opera House – FM Exemplar Project, Report Number: 2005-001-C-4 Building Information Modelling for FM at Sydney Opera House), a business strategy that has been well demonstrated. The development of the BIMSS - Open Specification for BIM has been surprisingly straightforward. The lack of technical difficulties in converting the House’s existing conventions and standards to the new model based environment can be related to three key factors: • SOH Facilities Portfolio – the internal group responsible for asset and facility management - have already well established building and documentation policies in place. The setting and adherence to well thought out operational standards has been based on the need to create an environment that is understood by all users and that addresses the major business needs of the House. • The second factor is the nature of the IFC Model Specification used to define the BIM protocol. The IFC standard is based on building practice and nomenclature, widely used in the construction industries across the globe. For example the nomenclature of building parts – eg ifcWall, corresponds to our normal terminology, but extends the traditional drawing environment currently used for design and documentation. This demonstrates that the international IFC model accurately represents local practice for building data representation and management. • a BIM environment sets up opportunities for innovative processes that can exploit the rich data in the model and improve services and functions for the House: for example several high-level processes have been identified that could benefit from standardized Building Information Models such as maintenance processes using engineering data, business processes using scheduling, venue access, security data and benchmarking processes using building performance data. The new technology matches business needs for current and new services. The adoption of IFC compliant applications opens the way forward for shared building model collaboration and new processes, a significant new focus of the BIM standards. In summary, SOH current building standards have been successfully drafted for a BIM environment and are confidently expected to be fully developed when BIM is adopted operationally by SOH. These BIM standards and their application to the Opera House are intended as a template for other organisations to adopt for the own procurement and facility management activities. Appendices provide an overview of the IFC Integrated Object Model and an understanding IFC Model Data.