523 resultados para overall dynamic body acceleration (ODBA)

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical and psychological decline is common in the post-treatment breast cancer population, yet the efficacy of concurrent interventions to meet both physical- psychosocial needs in this population has not been extensively examined. PURPOSE: This study explores the effects of a combined exercise and psychosocial intervention model on selected physiological-psychological parameters in post-treated breast cancer. METHODS: Forty-one breast cancer survivors were randomly assigned to one of four groups for an 8-week intervention: exercise only [EX, n=13] (aerobic and resistance training), psychosocial therapy only [PS, n=11] (biofeedback), combined EX and PS [EX+PS, n=11], or to control conditions [CO, n=6]. Mean delta score (post-intervention - baseline) were calculated for each of the following: body weight, % body fat (skin folds), predicted VO2max (Modified Bruce Protocol), overall dynamic muscular endurance [OME] (RMCRI protocol), static balance (Single leg stance test), dynamic balance (360° turn and 4-square step test), fatigue (Revised Piper Scale), and quality of life (FACT-B). A one-way ANOVA was used to analyze the preliminary results of this on-going randomized trial. RESULTS: Overall, there were significant differences in the delta scores for predicted VO2max, OME, and dynamic balance among the 4 groups (p<0.05). The EX+PS group showed a significant improvement in VO2max compared with the PS group (4.2 ± 3.8 vs. -0.9 ± 4.2 mL/kg/min; p<0.05). Both the EX+PS and EX groups showed significant improvements in OME compared with the PS and CO groups (44.5 ± 23.5 and 43.4 ± 22.1 vs. -3.9 ± 15.2 and 2.7 ± 13.7 repetitions; p<0.05). All 3 intervention groups showed significant improvements in dynamic balance compared with the CO group (-0.8 ± 0.6, -0.6 ± 0.8, and -0.6 ±1.0 vs. 0.6 ± 0.6 seconds; p<0.05). Overall, changes in fatigue tended towards significance among the 4 groups (p = 0.08), with decreased fatigue in the intervention groups and increased fatigue in the CO group. CONCLUSIONS: Our preliminary findings suggest that EX and PS seem to produce greater positive changes in the outcome measures than CO. However, at this point no definite conclusions can be made on the additive effects of combining the EX and PS interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human polybrominated diphenyl ether (PBDE) exposure occurs through a range of pathways including: ingestion of dust including hand-to-mouth contact; inhalation (air/particulate matter); and ingestion via food including the unique nutrition sources of human milk and placental transfer. While inhalation has been deemed a minor source of exposure, ingestion of food and dust make greater contributions to overall PBDE body burden with intake via dust reported to be much higher in infants than in adults. PBDEs have been detected in samples of human milk, blood serum, cord blood, and adipose tissue worldwide. Concentrations have been found to be highest in populations from North America, followed by Australia, Europe, and Asia. While factors such as gender and parity may not affect concentrations, occupational exposure and age (infants and children) are associated with higher PBDE concentrations. In contrast to “traditional” persistent organic pollutants, there is an inverse relationship between PBDE body burden and age. Predicted body burden calculated using available information on intake and elimination rates of BFRs appears to underestimate measured human body burden data obtained through analysis of BFRs in blood or human milk. This may be due to unknown exposure or inaccurate elimination data. Further exposure studies should focus on younger age groups and an investigation of human PBDE half-lives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper brings a rural geographical lens to the study of education and rurality. Two key interrelated notions underpinning Australian educational scholarship on rurality are explored. That is, the concepts of the rural and of community. The adoption and mobilisation of these terms in a large proportion of rural educational research as unproblematic is at odds with contemporary theorising in rural geography. In order to advance studies of rural education, we point to the contestability, fluidity and fundamentally political nature of these core concepts. In doing so, we draw on a selection of extant geographical research and educational research concerned with the rural. In concluding the paper we highlight that as well as challenging orthodoxies in relation to notions of rurality and community, more recent rural geographical scholarship has also engaged a greater diversity of methodological approaches. We suggest that more robust and nuanced approaches to terms such as 'the rural' and 'the community' in educational research could be garnered by reference to this dynamic body of methodological writing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes an automated procedure for analysing the significance of each of the many terms in the equations of motion for a serial-link robot manipulator. Significance analysis provides insight into the rigid-body dynamic effects that are significant locally or globally in the manipulator's state space. Deleting those terms that do not contribute significantly to the total joint torque can greatly reduce the computational burden for online control, and a Monte-Carlo style simulation is used to investigate the errors thus introduced. The procedures described are a hybrid of symbolic and numeric techniques, and can be readily implemented using standard computer algebra packages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The University of Queensland UltraCommuter concept is an ultra- light, low-drag, hybrid-electric sports coupe designed to minimize energy consumption and environmental impact while enhancing the performance, styling, features and convenience that motorists enjoy. This paper presents a detailed simulation study of the vehicle's performance and fuel economy using ADVISOR, including a detailed description of the component models and parameters assumed. Results from the study include predictions of a 0-100 kph acceleration time of ≺9s, and top speed of 170 kph, an electrical energy consumption of ≺67 Wh/km in ZEV mode and a petrol-equivalent fuel consumption of ≺2.5 L/100 km in charge-sustaining HEV mode. Overall, the results of the ADVISOR modelling confirm the UltraCommuter's potential to achieve high performance with high efficiency, and the authors look forward to a confirmation of these estimates following completion of the vehicle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although upper body musculoskeletal disorders (MSDs) represent an increasingly important issue for university students, few if any studies have targeted the occupational therapy faculty. Given this dearth of information, it was considered necessary to investigate a cross-section of Australian occupational therapy students by means of an established questionnaire survey. Completed replies were obtained from 95.7%, 100% and 97.7% (n = 44, 55 and 48) of students in the first, second and fourth years of a large occupational therapy school in northern Queensland, Australia.---------- The 12-month period prevalence of MSDs was as follows: neck (67.4%), shoulder (46.3%) and upper back (39.5%). Three-quarters of all students (75.5%) reported an MSD occurring in at least one of these body regions. Over half (56.5%) reported an MSD over 2 days' duration in the past year. Almost 40% (39.5%) reported an MSD that had affected their daily life, while one-quarter (25.2%) needed some type of treatment.---------- Logistic regression indicated that students aged over 21 years were almost four times more likely to report shoulder-related MSD (OR 3.7, 95%CI: 1.4-10.2). Year of study in the occupational therapy course was another important MSD correlate, with adjusted odds ratios ranging from 3.3 at the upper back (OR 3.3, 95%CI: 1.2-9.6) to 10.9 at the neck (OR 10.9, 95%CI: 3.2-43.8). Computer usage also incurred a certain degree of risk, with students who spent over 5 hours per week on the computer having an increased risk of MSD at the neck (OR 5.0, 95%CI: 1.3-21.5) and shoulder (OR 4.7, 95%CI: 1.4-18.3).---------- Overall, this study suggests that Australian occupational therapy students have a large burden from MSDs in the upper body region, even more so than other student groups and some working populations. Since the distribution of MSD risk is not uniform among them, interventions to help reduce these conditions need to be carefully targeted. Further longitudinal investigations would also be useful in determining the mechanisms and contributory factors for MSDs among this unique student population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate Multiple-Input and Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems behavior in indoor populated environments that have line-of-site (LoS) between transmitter and receiver arrays. The in-house built MIMO-OFDM packet transmission demonstrator, equipped with four transmitters and four receivers, has been utilized to perform channel measurements at 5.2 GHz. Measurements have been performed using 0 to 3 pedestrians with different antenna arrays (2 £ 2, 3 £ 3 and 4 £ 4). The maximum average capacity for the 2x2 deterministic Fixed SNR scenario is 8.5 dB compared to the 4x4 deterministic scenario that has a maximum average capacity of 16.2 dB, thus an increment of 8 dB in average capacity has been measured when the array size increases from 2x2 to 4x4. In addition a regular variation has been observed for Random scenarios compared to the deterministic scenarios. An incremental trend in average channel capacity for both deterministic and random pedestrian movements has been observed with increasing number of pedestrian and antennas. In deterministic scenarios, the variations in average channel capacity are more noticeable than for the random scenarios due to a more prolonged and controlled body-shadowing effect. Moreover due to the frequent Los blocking and fixed transmission power a slight decrement have been observed in the spread between the maximum and minimum capacity with random fixed Tx power scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accuracy of data derived from linked-segment models depends on how well the system has been represented. Previous investigations describing the gait of persons with partial foot amputation did not account for the unique anthropometry of the residuum or the inclusion of a prosthesis and footwear in the model and, as such, are likely to have underestimated the magnitude of the peak joint moments and powers. This investigation determined the effect of inaccuracies in the anthropometric input data on the kinetics of gait. Toward this end, a geometric model was developed and validated to estimate body segment parameters of various intact and partial feet. These data were then incorporated into customized linked-segment models, and the kinetic data were compared with that obtained from conventional models. Results indicate that accurate modeling increased the magnitude of the peak hip and knee joint moments and powers during terminal swing. Conventional inverse dynamic models are sufficiently accurate for research questions relating to stance phase. More accurate models that account for the anthropometry of the residuum, prosthesis, and footwear better reflect the work of the hip extensors and knee flexors to decelerate the limb during terminal swing phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. To evaluate the performance of the dynamic-area high-speed videokeratoscopy technique in the assessment of tear film surface quality with and without the presence of soft contact lenses on eye. Methods. Retrospective data from a tear film study using basic high-speed videokeratoscopy, captured at 25 frames per second, (Kopf et al., 2008, J Optom) were used. Eleven subjects had tear film analysis conducted in the morning, midday and evening on the first and seventh day of one week of no lens wear. Five of the eleven subjects then completed an extra week of hydrogel lens wear followed by a week of silicone hydrogel lens wear. Analysis was performed on a 6 second period of the inter-blink recording. The dynamic-area high-speed videokeratoscopy technique uses the maximum available area of Placido ring pattern reflected from the tear interface and eliminates regions of disturbance due to shadows from the eyelashes. A value of tear film surface quality was derived using image rocessing techniques, based on the quality of the reflected ring pattern orientation. Results. The group mean tear film surface quality and the standard deviations for each of the conditions (bare eye, hydrogel lens, and silicone hydrogel lens) showed a much lower coefficient of variation than previous methods (average reduction of about 92%). Bare eye measurements from the right and left eyes of eleven individuals showed high correlation values (Pearson’s correlation r = 0.73, p < 0.05). Repeated measures ANOVA across the 6 second period of measurement in the normal inter-blink period for the bare eye condition showed no statistically significant changes. However, across the 6 second inter-blink period with both contact lenses, statistically significant changes were observed (p < 0.001) for both types of contact lens material. Overall, wearing hydrogel and silicone hydrogel lenses caused the tear film surface quality to worsen compared with the bare eye condition (repeated measures ANOVA, p < 0.0001 for both hydrogel and silicone hydrogel). Conclusions. The results suggest that the dynamic-area method of high-speed videokeratoscopy was able to distinguish and quantify the subtle, but systematic worsening of tear film surface quality in the inter-blink interval in contact lens wear. It was also able to clearly show a difference between bare eye and contact lens wearing conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for noninvasive assessment of tear film surface quality (TFSQ) is proposed. The method is based on high-speed videokeratoscopy in which the corneal area for the analysis is dynamically estimated in a manner that removes videokeratoscopy interference from the shadows of eyelashes but not that related to the poor quality of the precorneal tear film that is of interest. The separation between the two types of seemingly similar videokeratoscopy interference is achieved by region-based classification in which the overall noise is first separated from the useful signal (unaltered videokeratoscopy pattern), followed by a dedicated interference classification algorithm that distinguishes between the two considered interferences. The proposed technique provides a much wider corneal area for the analysis of TFSQ than the previously reported techniques. A preliminary study with the proposed technique, carried out for a range of anterior eye conditions, showed an effective behavior in terms of noise to signal separation, interference classification, as well as consistent TFSQ results. Subsequently, the method proved to be able to not only discriminate between the bare eye and the lens on eye conditions but also to have the potential to discriminate between the two types of contact lenses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the question of designing a fully image-based visual servo control for a class of dynamic systems. The work is motivated by the ongoing development of image-based visual servo control of small aerial robotic vehicles. The kinematics and dynamics of a rigid-body dynamical system (such as a vehicle airframe) maneuvering over a flat target plane with observable features are expressed in terms of an unnormalized spherical centroid and an optic flow measurement. The image-plane dynamics with respect to force input are dependent on the height of the camera above the target plane. This dependence is compensated by introducing virtual height dynamics and adaptive estimation in the proposed control. A fully nonlinear adaptive control design is provided that ensures asymptotic stability of the closed-loop system for all feasible initial conditions. The choice of control gains is based on an analysis of the asymptotic dynamics of the system. Results from a realistic simulation are presented that demonstrate the performance of the closed-loop system. To the author's knowledge, this paper documents the first time that an image-based visual servo control has been proposed for a dynamic system using vision measurement for both position and velocity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A virtual fence is created by applying an aversive stimulus to an animal when it approaches a predefined boundary. It is implemented by a small animal-borne computer system with a GPS receiver. This approach allows the implementation of virtual paddocks inside a normal physically-fenced paddock. Since the fence lines are virtual they can be moved by programming to meet the needs of animal or land management. This approach enables us to consider animals as agents with natural mobility that are controllable and to apply a vast body of theory in motion planning. In this paper we describe a herd-animal simulator and physical experiments conducted on a small herd of 10 animals using a Smart Collar. The Smart Collar consists of a GPS, PDA, wireless networking and a sound amplifier. We describe a motion planning algorithm that can move a virtual paddock subject to landscape constraints which is suitable for mustering cows. We present simulation results and data from experiments with 8 cows equipped with Smart Collars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to contribute to the cross-disciplinary body of literature of identity and organisational culture. This study empirically investigated the Hatch and Schultz (2002) Organisational Identity Dynamics (OID) model to look at linkages between identity, image, and organisational culture. This study used processes defined in the OID model as a theoretical frame by which to understand the relationships between actual and espoused identity manifestations across visual identity, corporate identity, and organisational identity. The linking processes of impressing, mirroring, reflecting, and expressing were discussed at three unique levels in the organisation. The overarching research question of How does the organisational identity dynamics process manifest itself in practice at different levels within an organisation? was used as a means of providing empirical understanding to the previously theoretical OID model. Case study analysis was utilised to provide exploratory data across the organisational groups of: Level A - Senior Marketing and Corporate Communications Management, Level B - Marketing and Corporate Communications Staff, and Level C - Non-Marketing Managers and Employees. Data was collected via 15 in-depth interviews with documentary analysis used as a supporting mechanism to provide triangulation in analysis. Data was analysed against the impressing, mirroring, reflecting, and expressing constructs with specific criteria developed from literature to provide a detailed analysis of each process. Conclusions revealed marked differences in the ways in which OID processes occurred across different levels with implications for the ways in which VI, CI, and OI interact to develop holistic identity across organisational levels. Implications for theory detail the need to understand and utilise cultural understanding in identity programs as well as the value in developing identity communications which represent an actual rather than an espoused position.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the practical but challenging problem of motion planning for a deeply submerged rigid body. Here, we formulate the dynamic equations of motion of a submerged rigid body under the architecture of differential geometric mechanics and include external dissipative and potential forces. The mechanical system is represented as a forced affine-connection control system on the configuration space SE(3). Solutions to the motion planning problem are computed by concatenating and reparameterizing the integral curves of decoupling vector fields. We provide an extension to this inverse kinematic method to compensate for external potential forces caused by buoyancy and gravity. We present a mission scenario and implement the theoretically computed control strategy onto a test-bed autonomous underwater vehicle. This scenario emphasizes the use of this motion planning technique in the under-actuated situation; the vehicle loses direct control on one or more degrees of freedom. We include experimental results to illustrate our technique and validate our method.