916 resultados para orthogonal design
em Queensland University of Technology - ePrints Archive
Resumo:
A model to predict the buildup of mainly traffic-generated volatile organic compounds or VOCs (toluene, ethylbenzene, ortho-xylene, meta-xylene, and para-xylene) on urban road surfaces is presented. The model required three traffic parameters, namely average daily traffic (ADT), volume to capacity ratio (V/C), and surface texture depth (STD), and two chemical parameters, namely total suspended solid (TSS) and total organic carbon (TOC), as predictor variables. Principal component analysis and two phase factor analysis were performed to characterize the model calibration parameters. Traffic congestion was found to be the underlying cause of traffic-related VOC buildup on urban roads. The model calibration was optimized using orthogonal experimental design. Partial least squares regression was used for model prediction. It was found that a better optimized orthogonal design could be achieved by including the latent factors of the data matrix into the design. The model performed fairly accurately for three different land uses as well as five different particle size fractions. The relative prediction errors were 10–40% for the different size fractions and 28–40% for the different land uses while the coefficients of variation of the predicted intersite VOC concentrations were in the range of 25–45% for the different size fractions. Considering the sizes of the data matrices, these coefficients of variation were within the acceptable interlaboratory range for analytes at ppb concentration levels.
Resumo:
We sought to determine the impact of electrospinning parameters on a trustworthy criterion that could evidently improve the maximum applicability of fibrous scaffolds for tissue regeneration. We used an image analysis technique to elucidate the web permeability index (WPI) by modeling the formation of electrospun scaffolds. Poly(3-hydroxybutyrate) (P3HB) scaffolds were fabricated according to predetermined conditions of levels in a Taguchi orthogonal design. The material parameters were the polymer concentration, conductivity, and volatility of the solution. The processing parameters were the applied voltage and nozzle-to-collector distance. With a law to monitor the WPI values when the polymer concentration or the applied voltage was increased, the pore interconnectivity was decreased. The quality of the jet instability altered the pore numbers, areas, and other structural characteristics, all of which determined the scaffold porosity and aperture interconnectivity. An initial drastic increase was observed in the WPI values because of the chain entanglement phenomenon above a 6 wt % P3HB content. Although the solution mixture significantly (p < 0.05) changed the scaffold architectural characteristics as a function of the solution viscosity and surface tension, it had a minor impact on the WPI values. The solution mixture gained the third place of significance, and the distance was approved as the least important factor.
Principles in the design of multiphase experiments with a later laboratory phase: Orthogonal designs
Resumo:
This approach to sustainable design explores the possibility of creating an architectural design process which can iteratively produce optimised and sustainable design solutions. Driven by an evolution process based on genetic algorithms, the system allows the designer to “design the building design generator” rather than to “designs the building”. The design concept is abstracted into a digital design schema, which allows transfer of the human creative vision into the rational language of a computer. The schema is then elaborated into the use of genetic algorithms to evolve innovative, performative and sustainable design solutions. The prioritisation of the project’s constraints and the subsequent design solutions synthesised during design generation are expected to resolve most of the major conflicts in the evaluation and optimisation phases. Mosques are used as the example building typology to ground the research activity. The spatial organisations of various mosque typologies are graphically represented by adjacency constraints between spaces. Each configuration is represented by a planar graph which is then translated into a non-orthogonal dual graph and fed into the genetic algorithm system with fixed constraints and expected performance criteria set to govern evolution. The resultant Hierarchical Evolutionary Algorithmic Design System is developed by linking the evaluation process with environmental assessment tools to rank the candidate designs. The proposed system generates the concept, the seed, and the schema, and has environmental performance as one of the main criteria in driving optimisation.
Resumo:
In this paper we present a novel distributed coding protocol for multi-user cooperative networks. The proposed distributed coding protocol exploits the existing orthogonal space-time block codes to achieve higher diversity gain by repeating the code across time and space (available relay nodes). The achievable diversity gain depends on the number of relay nodes that can fully decode the signal from the source. These relay nodes then form space-time codes to cooperatively relay to the destination using number of time slots. However, the improved diversity gain is archived at the expense of the transmission rate. The design principles of the proposed space-time distributed code and the issues related to transmission rate and diversity trade off is discussed in detail. We show that the proposed distributed space-time coding protocol out performs existing distributed codes with a variable transmission rate.
Resumo:
The paper provides a systematic approach to designing the laboratory phase of a multiphase experiment, taking into account previous phases. General principles are outlined for experiments in which orthogonal designs can be employed. Multiphase experiments occur widely, although their multiphase nature is often not recognized. The need to randomize the material produced from the first phase in the laboratory phase is emphasized. Factor-allocation diagrams are used to depict the randomizations in a design and the use of skeleton analysis-of-variance (ANOVA) tables to evaluate their properties discussed. The methods are illustrated using a scenario and a case study. A basis for categorizing designs is suggested. This article has supplementary material online.
Resumo:
The work investigates the design of ideal threshold secret sharing in the context of cheating prevention. We showed that each orthogonal array is exactly a defining matrix of an ideal threshold scheme. To prevent cheating, defining matrices should be nonlinear so both the cheaters and honest participants have the same chance of guessing of the valid secret. The last part of the work shows how to construct nonlinear secret sharing based on orthogonal arrays.
Resumo:
A simple modular strategy for the synthesis of profluorescent nitroxide containing polymers is described. The incorporation of an epoxide as a pendant functionality on a polymer backbone synthesized using ATRP and subsequent nucleophilic ring-opening with sodium azide gave hydroxyl and azide functionality within a 3-bond radius. Orthogonal coupling chemistry then allowed the independent attachment of fluorophore and nitroxide groups in close proximity, giving rise to a profluorescent polymer. Validation of the viability of these materials as fluorescent sensors is demonstrated through efficient fluorescence switch-on observed when the materials are exposed to a model reductant or carbon-centred radical source.