290 resultados para optimal trigger speed
em Queensland University of Technology - ePrints Archive
Resumo:
Train delay is one of the most important indexes to evaluate the service quality of the railway. Because of the interactions of movement among trains, a delayed train may conflict with trains scheduled on other lines at junction area. Train that loses conflict may be forced to stop or slow down because of restrictive signals, which consequently leads to the loss of run-time and probably enlarges more delays. This paper proposes a time-saving train control method to recover delays as soon as possible. In the proposed method, golden section search is adopted to identify the optimal train speed at the expected time of restrictive signal aspect upgrades, which enables the train to depart from the conflicting area as soon as possible. A heuristic method is then developed to attain the advisory train speed profile assisting drivers in train control. Simulation study indicates that the proposed method enables the train to recover delays as soon as possible in case of disturbances at railway junctions, in comparison with the traditional maximum traction strategy and the green wave strategy.
Resumo:
Exceeding the speed limit and driving too fast for the conditions are regularly cited as significant contributing factors in traffic crashes, particularly fatal and serious injury crashes. Despite an extensive body of research highlighting the relationship between increased vehicle speeds and crash risk and severity, speeding remains a pervasive behaviour on Australian roads. The development of effective countermeasures designed to reduce the prevalence of speeding behaviour requires that this behaviour is well understood. The primary aim of this program of research was to develop a better understanding of the influence of drivers’ perceptions and attitudes toward police speed enforcement on speeding behaviour. Study 1 employed focus group discussions with 39 licensed drivers to explore the influence of perceptions relating to specific characteristics of speed enforcement policies and practices on drivers’ attitudes towards speed enforcement. Three primary factors were identified as being most influential: site selection; visibility; and automaticity (i.e., whether the enforcement approach is automated/camera-based or manually operated). Perceptions regarding these enforcement characteristics were found to influence attitudes regarding the perceived legitimacy and transparency of speed enforcement. Moreover, misperceptions regarding speed enforcement policies and practices appeared to also have a substantial impact on attitudes toward speed enforcement, typically in a negative direction. These findings have important implications for road safety given that prior research has suggested that the effectiveness of speed enforcement approaches may be reduced if efforts are perceived by drivers as being illegitimate, such that they do little to encourage voluntary compliance. Study 1 also examined the impact of speed enforcement approaches varying in the degree of visibility and automaticity on self-reported willingness to comply with speed limits. These discussions suggested that all of the examined speed enforcement approaches (see Section 1.5 for more details) generally showed potential to reduce vehicle speeds and encourage compliance with posted speed limits. Nonetheless, participant responses suggested a greater willingness to comply with approaches operated in a highly visible manner, irrespective of the corresponding level of automaticity of the approach. While less visible approaches were typically associated with poorer rates of driver acceptance (e.g., perceived as “sneaky” and “unfair”), participants reported that such approaches would likely encourage long-term and network-wide impacts on their own speeding behaviour, as a function of the increased unpredictability of operations and increased direct (specific deterrence) and vicarious (general deterrence) experiences with punishment. Participants in Study 1 suggested that automated approaches, particularly when operated in a highly visible manner, do little to encourage compliance with speed limits except in the immediate vicinity of the enforcement location. While speed cameras have been criticised on such grounds in the past, such approaches can still have substantial road safety benefits if implemented in high-risk settings. Moreover, site-learning effects associated with automated approaches can also be argued to be a beneficial by-product of enforcement, such that behavioural modifications are achieved even in the absence of actual enforcement. Conversely, manually operated approaches were reported to be associated with more network-wide impacts on behaviour. In addition, the reported acceptance of such methods was high, due to the increased swiftness of punishment, ability for additional illegal driving behaviours to be policed and the salutary influence associated with increased face-to-face contact with authority. Study 2 involved a quantitative survey conducted with 718 licensed Queensland drivers from metropolitan and regional areas. The survey sought to further examine the influence of the visibility and automaticity of operations on self-reported likelihood and duration of compliance. Overall, the results from Study 2 corroborated those of Study 1. All examined approaches were again found to encourage compliance with speed limits, such that all approaches could be considered to be “effective”. Nonetheless, significantly greater self-reported likelihood and duration of compliance was associated with visibly operated approaches, irrespective of the corresponding automaticity of the approach. In addition, the impact of automaticity was influenced by visibility; such that significantly greater self-reported likelihood of compliance was associated with manually operated approaches, but only when they are operated in a less visible fashion. Conversely, manually operated approaches were associated with significantly greater durations of self-reported compliance, but only when they are operated in a highly visible manner. Taken together, the findings from Studies 1 and 2 suggest that enforcement efforts, irrespective of their visibility or automaticity, generally encourage compliance with speed limits. However, the duration of these effects on behaviour upon removal of the enforcement efforts remains questionable and represents an area where current speed enforcement practices could possibly be improved. Overall, it appears that identifying the optimal mix of enforcement operations, implementing them at a sufficient intensity and increasing the unpredictability of enforcement efforts (e.g., greater use of less visible approaches, random scheduling) are critical elements of success. Hierarchical multiple regression analyses were also performed in Study 2 to investigate the punishment-related and attitudinal constructs that influence self-reported frequency of speeding behaviour. The research was based on the theoretical framework of expanded deterrence theory, augmented with three particular attitudinal constructs. Specifically, previous research examining the influence of attitudes on speeding behaviour has typically focussed on attitudes toward speeding behaviour in general only. This research sought to more comprehensively explore the influence of attitudes by also individually measuring and analysing attitudes toward speed enforcement and attitudes toward the appropriateness of speed limits on speeding behaviour. Consistent with previous research, a number of classical and expanded deterrence theory variables were found to significantly predict self-reported frequency of speeding behaviour. Significantly greater speeding behaviour was typically reported by those participants who perceived punishment associated with speeding to be less certain, who reported more frequent use of punishment avoidance strategies and who reported greater direct experiences with punishment. A number of interesting differences in the significant predictors among males and females, as well as younger and older drivers, were reported. Specifically, classical deterrence theory variables appeared most influential on the speeding behaviour of males and younger drivers, while expanded deterrence theory constructs appeared more influential for females. These findings have important implications for the development and implementation of speeding countermeasures. Of the attitudinal factors, significantly greater self-reported frequency of speeding behaviour was reported among participants who held more favourable attitudes toward speeding and who perceived speed limits to be set inappropriately low. Disappointingly, attitudes toward speed enforcement were found to have little influence on reported speeding behaviour, over and above the other deterrence theory and attitudinal constructs. Indeed, the relationship between attitudes toward speed enforcement and self-reported speeding behaviour was completely accounted for by attitudes toward speeding. Nonetheless, the complexity of attitudes toward speed enforcement are not yet fully understood and future research should more comprehensively explore the measurement of this construct. Finally, given the wealth of evidence (both in general and emerging from this program of research) highlighting the association between punishment avoidance and speeding behaviour, Study 2 also sought to investigate the factors that influence the self-reported propensity to use punishment avoidance strategies. A standard multiple regression analysis was conducted for exploratory purposes only. The results revealed that punishment-related and attitudinal factors significantly predicted approximately one fifth of the variance in the dependent variable. The perceived ability to avoid punishment, vicarious punishment experience, vicarious punishment avoidance and attitudes toward speeding were all significant predictors. Future research should examine these relationships more thoroughly and identify additional influential factors. In summary, the current program of research has a number of implications for road safety and speed enforcement policy and practice decision-making. The research highlights a number of potential avenues for the improvement of public education regarding enforcement efforts and provides a number of insights into punishment avoidance behaviours. In addition, the research adds strength to the argument that enforcement approaches should not only demonstrate effectiveness in achieving key road safety objectives, such as reduced vehicle speeds and associated crashes, but also strive to be transparent and legitimate, such that voluntary compliance is encouraged. A number of potential strategies are discussed (e.g., point-to-point speed cameras, intelligent speed adaptation. The correct mix and intensity of enforcement approaches appears critical for achieving optimum effectiveness from enforcement efforts, as well as enhancements in the unpredictability of operations and swiftness of punishment. Achievement of these goals should increase both the general and specific deterrent effects associated with enforcement through an increased perceived risk of detection and a more balanced exposure to punishment and punishment avoidance experiences.
Resumo:
Power system stabilizer (PSS) is one of the most important controllers in modern power systems for damping low frequency oscillations. Many efforts have been dedicated to design the tuning methodologies and allocation techniques to obtain optimal damping behaviors of the system. Traditionally, it is tuned mostly for local damping performance, however, in order to obtain a globally optimal performance, the tuning of PSS needs to be done considering more variables. Furthermore, with the enhancement of system interconnection and the increase of system complexity, new tools are required to achieve global tuning and coordination of PSS to achieve optimal solution in a global meaning. Differential evolution (DE) is a recognized as a simple and powerful global optimum technique, which can gain fast convergence speed as well as high computational efficiency. However, as many other evolutionary algorithms (EA), the premature of population restricts optimization capacity of DE. In this paper, a modified DE is proposed and applied for optimal PSS tuning of 39-Bus New-England system. New operators are introduced to reduce the probability of getting premature. To investigate the impact of system conditions on PSS tuning, multiple operating points will be studied. Simulation result is compared with standard DE and particle swarm optimization (PSO).
Resumo:
Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.
Resumo:
This paper describes a novel optimum path planning strategy for long duration AUV operations in environments with time-varying ocean currents. These currents can exceed the maximum achievable speed of the AUV, as well as temporally expose obstacles. In contrast to most other path planning strategies, paths have to be defined in time as well as space. The solution described here exploits ocean currents to achieve mission goals with minimal energy expenditure, or a tradeoff between mission time and required energy. The proposed algorithm uses a parallel swarm search as a means to reduce the susceptibility to large local minima on the complex cost surface. The performance of the optimisation algorithms is evaluated in simulation and experimentally with the Starbug AUV using a validated ocean model of Brisbane’s Moreton Bay.
Resumo:
This paper proposes a highly reliable fault diagnosis approach for low-speed bearings. The proposed approach first extracts wavelet-based fault features that represent diverse symptoms of multiple low-speed bearing defects. The most useful fault features for diagnosis are then selected by utilizing a genetic algorithm (GA)-based kernel discriminative feature analysis cooperating with one-against-all multicategory support vector machines (OAA MCSVMs). Finally, each support vector machine is individually trained with its own feature vector that includes the most discriminative fault features, offering the highest classification performance. In this study, the effectiveness of the proposed GA-based kernel discriminative feature analysis and the classification ability of individually trained OAA MCSVMs are addressed in terms of average classification accuracy. In addition, the proposedGA- based kernel discriminative feature analysis is compared with four other state-of-the-art feature analysis approaches. Experimental results indicate that the proposed approach is superior to other feature analysis methodologies, yielding an average classification accuracy of 98.06% and 94.49% under rotational speeds of 50 revolutions-per-minute (RPM) and 80 RPM, respectively. Furthermore, the individually trained MCSVMs with their own optimal fault features based on the proposed GA-based kernel discriminative feature analysis outperform the standard OAA MCSVMs, showing an average accuracy of 98.66% and 95.01% for bearings under rotational speeds of 50 RPM and 80 RPM, respectively.