26 resultados para ocean waves and oscillations

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we examine the use of a Kalman filter to aid in the mission planning process for autonomous gliders. Given a set of waypoints defining the planned mission and a prediction of the ocean currents from a regional ocean model, we present an approach to determine the best, constant, time interval at which the glider should surface to maintain a prescribed tracking error, and minimizing time on the ocean surface. We assume basic parameters for the execution of a given mission, and provide the results of the Kalman filter mission planning approach. These results are compared with previous executions of the given mission scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean processes are complex and have high variability in both time and space. Thus, ocean scientists must collect data over long time periods to obtain a synoptic view of ocean processes and resolve their spatiotemporal variability. One way to perform these persistent observations is to utilise an autonomous vehicle that can remain on deployment for long time periods. However, such vehicles are generally underactuated and slow moving. A challenge for persistent monitoring with these vehicles is dealing with currents while executing a prescribed path or mission. Here we present a path planning method for persistent monitoring that exploits ocean currents to increase navigational accuracy and reduce energy consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma science and plasmonics are connected by very similar physics, in particular, the notion of collective plasma waves and oscillations. This article provides a brief history of the junction between plasmas and plasmonics as well as highlights a few fundamental physical links.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate radiocarbon dating of marine samples requires knowledge of the marine radiocarbon reservoir effect. This effect for a particular site/region is generally assumed constant through time when calibrating marine 14C ages. However, recent studies have shown large temporal variations of several hundred to a couple of thousand years in this effect for a number of regions during the late Quaternary and Holocene. Here we report marine radiocarbon reservoir correction (ΔRΔR) for Heron Reef and Moreton Bay in southwestern (SW) Pacific for the last 8 ka derived from 14C analysis of 230Th-dated corals. Most of our ΔRΔR for the last ∼5.4 ka agree well with their modern value, but large ΔRΔR variability of ∼410 yr (from trough to peak) with possible decadal/centennial fluctuations is evident for the period ∼5.4–8 ka. The latter time interval also has significant variations with similar features in previously published ΔRΔR values for other sites in the Pacific, including southern Peru–northern Chile in southeastern (SE) Pacific, the South China Sea, Vanuatu and Papua New Guinea, with the largest magnitude of ∼920 yr from SE Pacific. The mechanisms for these large ΔRΔR variations across the Pacific during the mid-Holocene are complex processes involving (1) changes in the quantity and 14C content of upwelled waters in tropical east Pacific (TEP) (frequency and intensity of ocean upwelling in the TEP, and contribution of Subantarctic Mode Water to the upwelled waters, which is influenced by the intensity and position of southern westerly winds), and (2) variations in ocean circulation associated with climate change (La Niña/El Niño conditions, intensity of easterly trade winds, positions of the Intertropical Convergence Zone and the South Pacific Convergence Zone), which control the spreading of the older upwelled surface waters in the TEP to the western sites. Our results imply the need for employing temporal changes in ΔRΔR values, instead of constant (modern) values, for age calibration of Holocene marine samples not only for the SW Pacific sites but also for other tropical and subtropical sites in the Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the ocean science community, researchers have begun employing novel sensor platforms as integral pieces in oceanographic data collection, which have significantly advanced the study and prediction of complex and dynamic ocean phenomena. These innovative tools are able to provide scientists with data at unprecedented spatiotemporal resolutions. This paper focuses on the newly developed Wave Glider platform from Liquid Robotics. This vehicle produces forward motion by harvesting abundant natural energy from ocean waves, and provides a persistent ocean presence for detailed ocean observation. This study is targeted at determining a kinematic model for offline planning that provides an accurate estimation of the vehicle speed for a desired heading and set of environmental parameters. Given the significant wave height, ocean surface and subsurface currents, wind speed and direction, we present the formulation of a system identification to provide the vehicle’s speed over a range of possible directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper demonstrates the capabilities of wavelet transform (WT) for analyzing important features related to bottleneck activations and traffic oscillations in congested traffic in a systematic manner. In particular, the analysis of loop detector data from a freeway shows that the use of wavelet-based energy can effectively identify the location of an active bottleneck, the arrival time of the resulting queue at each upstream sensor location, and the start and end of a transition during the onset of a queue. Vehicle trajectories were also analyzed using WT and our analysis shows that the wavelet-based energies of individual vehicles can effectively detect the origins of deceleration waves and shed light on possible triggers (e.g., lane-changing). The spatiotemporal propagations of oscillations identified by tracing wavelet-based energy peaks from vehicle to vehicle enable analysis of oscillation amplitude, duration and intensity.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review focuses on one of the fundamental phenomena that occur upon application of sufficiently strong electric fields to gases, namely the formation and propagation of ionization waves-streamers. The dynamics of streamers is controlled by strongly nonlinear coupling, in localized streamer tip regions, between enhanced (due to charge separation) electric field and ionization and transport of charged species in the enhanced field. Streamers appear in nature (as initial stages of sparks and lightning, as huge structures-sprites above thunderclouds), and are also found in numerous technological applications of electrical discharges. Here we discuss the fundamental physics of the guided streamer-like structures-plasma bullets which are produced in cold atmospheric-pressure plasma jets. Plasma bullets are guided ionization waves moving in a thin column of a jet of plasma forming gases (e.g.,He or Ar) expanding into ambient air. In contrast to streamers in a free (unbounded) space that propagate in a stochastic manner and often branch, guided ionization waves are repetitive and highly-reproducible and propagate along the same path-the jet axis. This property of guided streamers, in comparison with streamers in a free space, enables many advanced time-resolved experimental studies of ionization waves with nanosecond precision. In particular, experimental studies on manipulation of streamers by external electric fields and streamer interactions are critically examined. This review also introduces the basic theories and recent advances on the experimental and computational studies of guided streamers, in particular related to the propagation dynamics of ionization waves and the various parameters of relevance to plasma streamers. This knowledge is very useful to optimize the efficacy of applications of plasma streamer discharges in various fields ranging from health care and medicine to materials science and nanotechnology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-frequency electrostatic surface waves at the interface of a dusty plasma and a dielectric wall are investigated. The effects of ionization, recombination, and dust-charge variation are taken into account in a self-consistent manner, so that the system considered is closed. It is shown that a coupling of the surface waves and the dust-charge relaxation mode leads to anomalous damping and frequency downshift of the waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many interesting phenomena have been observed in layers of granular materials subjected to vertical oscillations; these include the formation of a variety of standing wave patterns, and the occurrence of isolated features called oscillons, which alternately form conical heaps and craters oscillating at one-half of the forcing frequency. No continuum-based explanation of these phenomena has previously been proposed. We apply a continuum theory, termed the double-shearing theory, which has had success in analyzing various problems in the flow of granular materials, to the problem of a layer of granular material on a vertically vibrating rigid base undergoing vertical oscillations in plane strain. There exists a trivial solution in which the layer moves as a rigid body. By investigating linear perturbations of this solution, we find that at certain amplitudes and frequencies this trivial solution can bifurcate. The time dependence of the perturbed solution is governed by Mathieu’s equation, which allows stable, unstable and periodic solutions, and the observed period-doubling behaviour. Several solutions for the spatial velocity distribution are obtained; these include one in which the surface undergoes vertical velocities that have sinusoidal dependence on the horizontal space dimension, which corresponds to the formation of striped standing waves, and is one of the observed patterns. An alternative continuum theory of granular material mechanics, in which the principal axes of stress and rate-of-deformation are coincident, is shown to be incapable of giving rise to similar instabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical control systems have become a part of our everyday life. Systems such as automobiles, robot manipulators, mobile robots, satellites, buildings with active vibration controllers and air conditioning systems, make life easier and safer, as well as help us explore the world we live in and exploit it’s available resources. In this chapter, we examine a specific example of a mechanical control system; the Autonomous Underwater Vehicle (AUV). Our contribution to the advancement of AUV research is in the area of guidance and control. We present innovative techniques to design and implement control strategies that consider the optimization of time and/or energy consumption. Recent advances in robotics, control theory, portable energy sources and automation increase our ability to create more intelligent robots, and allows us to conduct more explorations by use of autonomous vehicles. This facilitates access to higher risk areas, longer time underwater, and more efficient exploration as compared to human occupied vehicles. The use of underwater vehicles is expanding in every area of ocean science. Such vehicles are used by oceanographers, archaeologists, geologists, ocean engineers, and many others. These vehicles are designed to be agile, versatile and robust, and thus, their usage has gone from novelty to necessity for any ocean expedition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autonomous underwater gliders are robust and widely-used ocean sampling platforms that are characterized by their endurance, and are one of the best approaches to gather subsurface data at the appropriate spatial resolution to advance our knowledge of the ocean environment. Gliders generally do not employ sophisticated sensors for underwater localization, but instead dead-reckon between set waypoints. Thus, these vehicles are subject to large positional errors between prescribed and actual surfacing locations. Here, we investigate the implementation of a large-scale, regional ocean model into the trajectory design for autonomous gliders to improve their navigational accuracy. We compute the dead-reckoning error for our Slocum gliders, and compare this to the average positional error recorded from multiple deployments conducted over the past year. We then compare trajectory plans computed on-board the vehicle during recent deployments to our prediction-based trajectory plans for 140 surfacing occurrences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autonomous Underwater Vehicles (AUVs) are revolutionizing oceanography through their versatility, autonomy and endurance. However, they are still an underutilized technology. For coastal operations, the ability to track a certain feature is of interest to ocean scientists. Adaptive and predictive path planning requires frequent communication with significant data transfer. Currently, most AUVs rely on satellite phones as their primary communication. This communication protocol is expensive and slow. To reduce communication costs and provide adequate data transfer rates, we present a hardware modification along with a software system that provides an alternative robust disruption- tolerant communications framework enabling cost-effective glider operation in coastal regions. The framework is specifically designed to address multi-sensor deployments. We provide a system overview and present testing and coverage data for the network. Additionally, we include an application of ocean-model driven trajectory design, which can benefit from the use of this network and communication system. Simulation and implementation results are presented for single and multiple vehicle deployments. The presented combination of infrastructure, software development and deployment experience brings us closer to the goal of providing a reliable and cost-effective data transfer framework to enable real-time, optimal trajectory design, based on ocean model predictions, to gather in situ measurements of interesting and evolving ocean features and phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main focus of this paper is on the motion planning problem for an under-actuated, submerged, Omni-directional autonomous vehicle. Underactuation is extremely important to consider in ocean research and exploration. Battery failure, actuator malfunction and electronic shorts are a few reasons that may cause the vehicle to lose direct control of one or more degrees-of-freedom. Underactuation is also critical to understand when designing vehicles for specific tasks, such as torpedo-shaped vehicles. An under-actuated vehicle is less controllable, and hence, the motion planning problem is more difficult. Here, we present techniques based on geometric control to provide solutions to the under-actuated motion planning problem for a submerged underwater vehicle. Our results are validated with experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most materials, short stress waves are generated during the process of plastic deformation, phase transformation, crack formation and crack growth. These phenomena are applied in acoustic emission (AE) for the detection of material defects in a wide spectrum of areas, ranging from nondestructive testing for the detection of materials defects to monitoring of microseismical activity. AE technique is also used for defect source identification and for failure detection. AE waves consist of P waves (primary longitudinal waves), S waves (shear/transverse waves) and Rayleigh (surface) waves as well as reflected and diffracted waves. The propagation of AE waves in various modes has made the determination of source location difficult. In order to use acoustic emission technique for accurate identification of source, an understanding of wave propagation of the AE signals at various locations in a plate structure is essential. Furthermore, an understanding of wave propagation can also assist in sensor location for optimum detection of AE signals along with the characteristics of the source. In real life, as the AE signals radiate from the source it will result in stress waves. Unless the type of stress wave is known, it is very difficult to locate the source when using the classical propagation velocity equations. This paper describes the simulation of AE waves to identify the source location and its characteristics in steel plate as well as the wave modes. The finite element analysis (FEA) is used for the numerical simulation of wave propagation in thin plate. By knowing the type of wave generated, it is possible to apply the appropriate wave equations to determine the location of the source. For a single plate structure, the results show that the simulation algorithm is effective to simulate different stress waves.