663 resultados para non-isothermal kinetic
em Queensland University of Technology - ePrints Archive
Resumo:
In this paper, laminar natural convection flow from a permeable and isothermal vertical surface placed in non-isothermal surroundings is considered. Introducing appropriate transformations into the boundary layer equations governing the flow derives non-similar boundary layer equations. Results of both the analytical and numerical solutions are then presented in the form of skin-friction and Nusselt number. Numerical solutions of the transformed non-similar boundary layer equations are obtained by three distinct solution methods, (i) the perturbation solutions for small � (ii) the asymptotic solution for large � (iii) the implicit finite difference method for all � where � is the transpiration parameter. Perturbation solutions for small and large values of � are compared with the finite difference solutions for different values of pertinent parameters, namely, the Prandtl number Pr, and the ambient temperature gradient n.
Resumo:
The effect of conduction-convection-radiation on natural convection flow of Newtonian optically thick gray fluid, confined in a non-Darcian porous media square cavity is numerically studied. For the gray fluid consideration is given to Rosseland diffusion approximation. Further assuming that (i) the temperature of the left vertical wall is varying linearly with height, (ii) cooled right vertical and top walls and (iii) the bottom wall is uniformly-heated. The governing equations are solved using the Alternate Direct Implicit method together with the Successive Over Relaxation technique. The investigation of the effect of governing parameters namely the Forschheimer resistance (Γ), the Planck constant (Rd), and the temperature difference (Δ), on flow pattern and heat transfer characteristics has been carried out. It was seen that the reduction of flow and heat transfer occurs as the Forschheimer resistance is increased. On the other hand both the strength of flow and heat transfer increases as the temperature ratio, Δ, is increased.
Resumo:
Silane grafted kaolinite (KGS) was prepared through grinding kaolinite and then grafting with 3-aminopropyltriethoxysilane. The influence of KGS on the curing kinetics of cycloaliphatic epoxy resin was studied by non-isothermal differential scanning calorimetry at different heating rates. The reaction activation energy (Ea) was determined based on the Flynn–Wall–Ozawa method. The results of dynamic differential scanning calorimetry (DSC) kinetic analysis show that the surface hydroxyl groups of clay decreases the Ea from 70.6 kJ mol− 1 to 62.8 kJ mol− 1 and accelerates the curing reaction of the epoxy resin. The silane grafting reactions consume the surface hydroxyl groups of kaolinite and lead to a decrease in the catalytic efficiency of KGS in the curing of epoxy resin.
Resumo:
CRTA technology offers better resolution and a more detailed interpretation of the decomposition processes of a clay mineral such as sepiolite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal changes in the sepiolite as the sepiolite is converted to an anhydride. In the dynamic experiment two dehydration steps are observed over the ~20-170 and 170-350°C temperature range. In the dynamic experiment three dehydroxylation steps are observed over the temperature ranges 201-337, 337-638 and 638-982°C. The CRTA technology enables the separation of the thermal decomposition steps.
Resumo:
Controlled rate thermal analysis (CRTA) technology offers better resolution and a more detailed interpretation of the decomposition processes of a clay mineral such as sepiolite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal changes in the sepiolite as the sepiolite is converted to an anhydride. In the dynamic experiment two dehydration steps are observed over the *20–170 and 170–350 �C temperature range. In the dynamic experiment three dehydroxylation steps are observed over the temperature ranges 201–337, 337–638 and 638–982 �C. The CRTA technology enables the separation of the thermal decomposition steps.
Resumo:
Unsteady natural convection inside a triangular cavity has been studied in this study. The cavity is filled with a saturated porous medium with non-isothermal left inclined wall while the bottom surface is isothermally heated and the right inclined surface is isothermally cold. An internal heat generation is also considered which is dependent of the fluid temperature. The governing equations are solved numerically by finite element method. The Prandtl number of the fluid is considered as 0.7 (air) while the aspect ratio and the Rayleigh number are considered as 0.5 and 105 respectively. The effect of the porosity of the medium and heat generation on the fluid flow and heat transfer have been presented as a form of streamlines and isotherms. The rate of heat transfer through three surfaces of the enclosure is also presented.
Resumo:
Unsteady natural convection inside a triangular cavity has been studied in this study. The cavity is filled with a saturated porous medium with non-isothermal left inclined wall while the bottom surface is isothermally heated and the right inclined surface is isothermally cooled. An internal heat generation is also considered which is dependent on the fluid temperature. The governing equations are solved numerically by finite volume method. The Prandtl number, Pr of the fluid is considered as 0.7 (air) while the aspect ratio and the Rayleigh number, Ra are considered as 0.5 and 105 respectively. The effect of heat generation on the fluid flow and heat transfer have been presented as a form of streamlines and isotherms. The rate of heat transfer through three surfaces of the enclosure is also presented.
Resumo:
Drying has been extensively used as a food preservation procedure. The longer life attained by drying is however accompanied by huge energy consumption and deterioration of quality. Moisture diffusivity is an important factor that is considered essential to understand for design, analysis, and optimization of drying processes for food and other materials. Without an accurate value of moisture diffusivity, drying kinetics, energy consumption, quality attributes such as shrinkage, texture, and microstructure cannot be predicted properly. However, moisture diffusivities differ due to variation of composition and microstructure of foodstuff and drying variables. For a particular food, it changes with many factors including moisture content, water holding capacity, process variables and physiochemical attributes of food. Published information on moisture diffusivities of banana is inadequate and sometimes inconsistent due to lack of precise repeatable analysis techniques. In this work, the effective moisture diffusivity of banana was determined by Thermogravimetric Analysis (TGA), which ensures precise measurements and reproduction of experiments. A TGA Q500 V20.13 Build 39 was deployed to obtain the drying curve of the food material. It was found that effective moisture diffusivity ranged from 6.63 x10-10 to 1.03 x10-9 and 1.34 x10-10 to 6.60 x10-10 for isothermal at 70 0C and non-isothermal process respectively.These values are consistent with the value of moisture diffusivity found in the literature.
Resumo:
Laminar two-dimensional natural convection boundary-layer flow of non-Newtonian fluids along an isothermal horizontal circular cylinder has been studied using a modified power-law viscosity model. In this model, there are no unrealistic limits of zero or infinite viscosity. Therefore, the boundary-layer equations can be solved numerically by using marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning as well as shear thickening fluids in terms of the fluid velocity and temperature distributions, shear stresses and rate of heat transfer in terms of the local skin-friction and local Nusselt number respectively.
Resumo:
Laminar magnetohydrodynamic (MHD) natural convection flow from an isothermal sphere immersed in a fluid with viscosity proportional to linear function of temperature has been studied. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to convenient form which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distribution, streamlines and isotherms of the fluid as well as heat transfer characteristics, namely the local skin-friction coefficients and the local heat transfer rate for a wide range of magnetohydrodynamic paramagnet and viscosity-variation parameter.
Resumo:
Physiological pulsatile flow in a 3D model of arterial double stenosis, using the modified Power-law blood viscosity model, is investigated by applying Large Eddy Simulation (LES) technique. The computational domain has been chosen is a simple channel with biological type stenoses. The physiological pulsation is generated at the inlet of the model using the first four harmonics of the Fourier series of the physiological pressure pulse. In LES, a top-hat spatial grid-filter is applied to the Navier-Stokes equations of motion to separate the large scale flows from the subgrid scale (SGS). The large scale flows are then resolved fully while the unresolved SGS motions are modelled using the localized dynamic model. The flow Reynolds numbers which are typical of those found in human large artery are chosen in the present work. Transitions to turbulent of the pulsatile non-Newtonian along with Newtonian flow in the post stenosis are examined through the mean velocity, wall shear stress, mean streamlines as well as turbulent kinetic energy and explained physically along with the relevant medical concerns.
Resumo:
Magnetohydrodynamic (MHD) natural convection laminar flow from an iso-thermal horizontal circular cylinder immersed in a fluid with viscosity proportional to a linear function of temperature will be discussed with numerical simulations. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equa-tions are reduced to convenient form, which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distributions of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of magnetohydrodynamic parameter, viscosity-variation parameter and viscous dissipation parameter. MHD flow in this geometry with temperature dependent viscosity is absent in the literature. The results obtained from the numerical simulations have been veri-fied by two methodologies.
Resumo:
Purpose: To examine the relationship between hip abductor muscle (HABD) strength and the magnitude of pelvic drop (MPD) for patients with non-specific low back pain (NSLBP) and controls (CON) prior to and following a 3-week HABD strengthening protocol. At baseline, we hypothesized that NSLBP patients would exhibit reduced HABD strength and greater MPD compared to CON. Following the protocol, we hypothesized that strength would increase and MPD would decrease. Relevance: The Trendelenburg test (TT) is a common clinical test used to examine the ability of the HABD to maintain horizontal pelvic position during single limb stance. However, no study has specifically tested this theory. Moreover, no study has investigated the relationship between HABD strength and pelvic motion during walking or tested whether increased HABD strength would reduce the MPD. Methods: Quasi-experimental with 3-week exercise intervention. Fifteen NSLBP patients (32.5yrs,range 21-51yrs; VAS baseline: 5.3cm) and 10 CON (29.5yrs,range 22-47yrs) were recruited. Isometric HABD strength was measured using a force dynamometer and the average of three maximal voluntary contractions were normalized to body mass (N/kg). Two-dimensional MPD (degrees) was measured using a 60 Hz camera and was derived from two retroreflective-markers placed on the posterior superior iliac spines. MPD was measured while performing the static TT and while walking and averaged over 10 consecutive footfalls. NSLBP patients completed a 3-week HABD strengthening protocol consisting of 2 open-kinetic-chain exercises then all measures were repeated. Non-parametric analysis was used for group comparisons and correlation analysis. Results: At baseline, the NSLBP patients demonstrated 31% reduced HABD strength (mean=6.6 N/kg) compared to CON (mean=9.5 N/kg: p=0.03) and no significant differences in maximal pelvic frontal plane excursion while walking (NSLBP:mean=8.1°, CON:mean=7.1°: p=0.72). No significant correlations were measured between left HABD strength and right MPD (r=-0.37, p=0.11), or between right HABD strength and left MPD (r=-0.04, p=0.84) while performing the static TT. Following the 3-week strengthening protocol, NSLBP patients demonstrated a 12% improvement in strength (Post:mean=7.4 N/kg: p=0.02), a reduction in pain (VAS followup: 2.8cm), but no significant decreases in MPD while walking (p=0.92). Conclusions: NSLBP patients demonstrated reduced HABD strength at baseline and were able to increase strength and reduce pain in a 3-week period. However, despite increases in HABD strength, the NSLBP group exhibited similar MPD motion during the static TT and while walking compared to baseline and controls. Implications: The results suggest that the HABD alone may not be primarily responsible for controlling a horizontal pelvic position during static and dynamic conditions. Increasing the strength of the hip abductors resulted in a reduction of pain in NSLBP patients providing evidence for further research to identify specific musculature responsible for controlling pelvic motion.
Resumo:
The binding kinetics of NF-kappaB p50 to the Ig-kappaB site and to a DNA duplex with no specific binding site were determined under varying conditions of potassium chloride concentration using a surface plasmonresonance biosensor. Association and dissociation rate constants were measured enabling calculation of the dissociation constants. Under previously established high affinity buffer conditions, the k a for both sequences was in the order of 10(7) M-1s-1whilst the k d values varied 600-fold in a sequence-dependent manner between 10(-1) and 10(-4 )s-1, suggesting that the selectivity of p50 for different sequences is mediated primarily through sequence-dependent dissociation rates. The calculated K D value for the Ig-kappaB sequence was 16 pM, whilst the K D for the non-specific sequence was 9.9 nM. As the ionic strength increased to levels which are closer to that of the cellular environment, the binding of p50 to the non-specific sequence was abolished whilst the specific affinity dropped to nanomolar levels. From these results, a mechanism is proposed in which p50 binds specific sequences with high affinity whilst binding non-specific sequences weakly enough to allow efficient searching of the DNA.
Resumo:
The results of studies on the growth of high-aspect nanostructures in low-temperature non-equilibrium plasmas of reactive gas mixtures with or without hydrogen are presented. The results suggest that the hydrogen in the reactive plasma strongly affects the length of the nanostructures. This phenomenon is explained in terms of selective hydrogen passivation of the lateral and top surfaces of the surface-supported nanostructures. The theoretical model describes the effect of the atomic hydrogen passivation on the nanostructure shape and predicts the critical hydrogen coverage of the lateral surfaces necessary to achieve the nanostructure growth with the pre-determined shape. Our results demonstrate that the use of a strongly non-equilibrium plasma is very effective in significantly improving the shape control of quasi-one-dimensional single-crystalline nanostructures.