105 resultados para nitrogen addition
em Queensland University of Technology - ePrints Archive
Resumo:
Despite recent developments in fixed-film combined biological nutrients removal (BNR) technology; fixed-film systems (i.e., biofilters), are still at the early stages of development and their application has been limited to a few laboratory-scale experiments. Achieving enhanced biological phosphorus removal in fixed-film systems requires exposing the micro-organisms and the waste stream to alternating anaerobic/aerobic or anaerobic/anoxic conditions in cycles. The concept of cycle duration (CD) as a process control parameter is unique to fixed-film BNR systems, has not been previously investigated, and can be used to optimise the performance of such systems. The CD refers to the elapsed time before the biomass is re-exposed to the same environmental conditions in cycles. Fixed-film systems offer many advantages over suspended growth systems such as reduced operating costs, simplicity of operation, absence of sludge recycling problems, and compactness. The control of nutrient discharges to water bodies, improves water quality, fish production, and allow water reuse. The main objective of this study was to develop a fundamental understanding of the effect of CD on the transformations of nutrients in fixed-film biofilter systems subjected to alternating aeration I no-aeration cycles A fixed-film biofilter system consisting of three up-flow biofilters connected in series was developed and tested. The first and third biofilters were operated in a cyclic mode in which the biomass was subjected to aeration/no-aeration cycles. The influent wastewater was simulated aquaculture whose composition was based on actual water quality parameters of aquacuture wastewater from a prawn grow-out facility. The influent contained 8.5 - 9:3 mg!L a111monia-N, 8.5- 8.7 mg/L phosphate-P, and 45- 50 mg!L acetate. Two independent studies were conducted at two biofiltration rates to evaluate and confirm the effect of CD on nutrient transformations in the biofilter system for application in aquaculture: A third study was conducted to enhance denitrification in the system using an external carbon- source at a rate varying from 0-24 ml/min. The CD was varied in the range of0.25- 120 hours for the first two studies and fixed at 12 hours for the third study. This study identified the CD as an important process control parameter that can be used to optimise the performance of full-scale fixed-film systems for BNR which represents a novel contribution in this field of research. The CD resulted in environmental conditions that inhibited or enhanced nutrient transformations. The effect of CD on BNR in fixed-film systems in terms of phosphorus biomass saturation and depletion has been established. Short CDs did not permit the establishment of anaerobic activity in the un-aerated biofilter and, thus, inhibited phosphorus release. Long CDs resulted in extended anaerobic activity and, thus, resulted in active phosphorus release. Long CDs, however, resulted in depleting the biomass phosphorus reservoir in the releasing biofilter and saturating the biomass phosphorus reservoir in the up-taking biofilter in the cycle. This phosphorus biomass saturation/depletion phenomenon imposes a practical limit on how short or long the CD can be. The length of the CD should be somewhere just before saturation or depletion occur and for the system tested, the optimal CD was 12 hours for the biofiltration rates tested. The system achieved limited net phosphorus removal due to the limited sludge wasting and lack of external carbon supply during phosphorus uptake. The phosphorus saturation and depletion reflected the need to extract phosphorus from the phosphorus-rich micro-organisms, for example, through back-washing. The major challenges of achieving phosphorus removal in the system included: (I) overcoming the deterioration in the performance of the system during the transition period following the start of each new cycle; and (2) wasting excess phosphorus-saturated biomass following the aeration cycle. Denitrification occurred in poorly aerated sections of the third biofilter and generally declined as the CD increased and as the time progressed in the individual cycle. Denitrification and phosphorus uptake were supplied by an internal organic carbon source, and the addition of an external carbon source (acetate) to the third biofilter resulted in improved denitrification efficiency in the system from 18.4 without supplemental carbon to 88.7% when the carbon dose reached 24 mL/min The removal of TOC and nitrification improved as the CD increased, as a result of the reduction in the frequency of transition periods between the cycles. A conceptual design of an effective fixed-film BNR biofilter system for the treatment of the influent simulated aquaculture wastewater was proposed based on the findings of the study.
Resumo:
The polyphosphoric acid catalyzed addition of propanal to limonene yielded a novel bicyclic ether 2,2,6-trimethyl-4-ethyl-3-oxabicyclo[3.3.1]non-6-ene (I). The yield of (I) was significantly increased by carrying out the reaction under nitrogen rather than in air.
Resumo:
Nitrogen dioxide is used as a "radical scavenger" to probe the position of carbon-centered radicals within complex radical ions in the gas phase. As with analogous neutral radical reactions, this addition results in formation of an \[M + NO2](+) adduct, but the structural identity of this species remains ambiguous. Specifically, the question remains: do such adducts have a nitro-(RNO2) or nitrosoxy-(RONO) moiety, or are both isomers present in the adduct population? In order to elucidate the products of such reactions, we have prepared and isolated three distonic phenyl radical cations and observed their reactions with nitrogen dioxide in the gas phase by ion-trap mass spectrometry. In each case, stabilized \[M + NO2](+) adduct ions are observed and isolated. The structure of these adducts is probed by collision-induced dissociation and ultraviolet photodissociation action spectroscopy and a comparison made to the analogous spectra of authentic nitro-and nitrosoxy-benzenes. We demonstrate unequivocally that for the phenyl radical cations studied here, all stabilized \[M + NO2](+) adducts are exclusively nitrobenzenes. Electronic structure calculations support these mass spectrometric observations and suggest that, under low-pressure conditions, the nitrosoxy-isomer is unlikely to be isolated from the reaction of an alkyl or aryl radical with NO2. The combined experimental and theoretical results lead to the prediction that stabilization of the nitrosoxy-isomer will only be possible for systems wherein the energy required for dissociation of the RO-NO bond (or other low energy fragmentation channels) rises close to, or above, the energy of the separated reactants.
Resumo:
As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha−1 on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha−1) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC
Resumo:
Ripening period refers to a phase of stabilization in sand filters in water treatment systems that follows a new installation or cleaning of the filter. Intermittent wetting and drying, a unique property of stormwater biofilters, would similarly be subjected to a phase of stabilization. Suspended solids, is an important parameter that is often used to monitor the stabilization of sand filters in water treatment systems. Stormwater biofilters however, contain organic material that is added to the filter layer to enhance nitrate removal, the dynamics of which is seldom analysed in stabilization of stormwater biofilters. Therefore, in this study of stormwater biofiltration in addition to suspended solids (Turbidity), organic matter (TOC, DOC, TN and TKN) was also monitored as a parameter for stabilization of the stormwater biofilter. One Perspex bioretention column (94 mm internal diameter) was fabricated with filter layer that contained 8% organic material and fed with tapwater with different antecedent dry days (0 – 40 day) at 100 mL/min. Samples were collected from the outflow at different time intervals between 2 – 150 minutes and were tested for Total Organic Carbon, Dissolved Organic Carbon, Total Nitrogen, Total Kjeldhal Nitrogen and Turbidity. The column was observed to experience two phases of stabilization, one at the beginning of each event that lasted for 30 minutes while the other phase was observed across subsequent events that related to the age of filter.
Resumo:
The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay.
Resumo:
Kindergartens in China offer structured full-day programs for children aged 3-6. Although formal schooling does not commence until age 7, the mathematics program in kindergartens is specifically focused on developing young children’s facility with simple addition and subtraction. This study explored young Chinese children’s strategies for solving basic addition facts as well as their intuitive understanding of addition via interview methods. Results indicate a strong impact that teacher-directed teaching methods have on young children’s cognitions in relation to addition.
Resumo:
Nanocomposite membranes are fabricated from sodalite nanocrystals (Sod-N) dispersed in BTDA-MDA polyimide matrices and then characterized structurally and for gas separation. No voids are found upon investigation of the interfacial contact between the inorganic and organic phases, even at a Sod-N loading of up to 35 wt.%. This is due to the functionalization of the zeolite nanocrystals with amino groups (==Si_(CH3)(CH2)3NH2), which covalently link the particles to the polyimide chains in the matrices. The addition of Sod-N increases the hydrogen-gas permeability of the membranes, while nitrogen permeability decreases. Overall, these nanocomposite membranes display substantial selectivity improvements. The sodalite–polyimide membrane containing 35 wt.% Sod-N has a hydrogen permeability of 8.0 Barrers and a H2/N2 ideal selectivity of 281 at 25 C whereas the plain polyimide membrane exhibits a hydrogen permeability of 7.0 Barrers and a H2/N2 ideal selectivity of 198 at the same testing temperature.
Resumo:
Polymer microspheres loaded with bioactive particles, biomolecules, proteins, and/or growth factors play important roles in tissue engineering, drug delivery, and cell therapy. The conventional double emulsion method and a new method of electrospraying into liquid nitrogen were used to prepare bovine serum albumin (BAS)-loaded poly(lactic-co-glycolic acid) (PLGA) porous microspheres. The particle size, the surface morphology and the internal porous structure of the microspheres were observed using scanning electron microscopy (SEM). The loading efficiency, the encapsulation efficiency, and the release profile of the BSA-loaded PLGA microspheres were measured and studied. It was shown that the microspheres from double emulsion had smaller particle sizes (3-50 m), a less porous structure, a poor loading efficiency (5.2 %), and a poor encapsulation efficiency (43.5%). However, the microspheres from the electrospraying into liquid nitrogen had larger particle sizes (400-600 m), a highly porous structure, a high loading efficiency (12.2%), and a high encapsulation efficiency (93.8%). Thus the combination of electrospraying with freezing in liquid nitrogen and subsequent freeze drying represented a suitable way to produce polymer microspheres for effective loading and sustained release of proteins.
Resumo:
Nitrous oxide (N2O) is a potent agricultural greenhouse gas (GHG). More than 50% of the global anthropogenic N2O flux is attributable to emissions from soil, primarily due to large fertilizer nitrogen (N) applications to corn and other non-leguminous crops. Quantification of the trade–offs between N2O emissions, fertilizer N rate, and crop yield is an essential requirement for informing management strategies aiming to reduce the agricultural sector GHG burden, without compromising productivity and producer livelihood. There is currently great interest in developing and implementing agricultural GHG reduction offset projects for inclusion within carbon offset markets. Nitrous oxide, with a global warming potential (GWP) of 298, is a major target for these endeavours due to the high payback associated with its emission prevention. In this paper we use robust quantitative relationships between fertilizer N rate and N2O emissions, along with a recently developed approach for determining economically profitable N rates for optimized crop yield, to propose a simple, transparent, and robust N2O emission reduction protocol (NERP) for generating agricultural GHG emission reduction credits. This NERP has the advantage of providing an economic and environmental incentive for producers and other stakeholders, necessary requirements in the implementation of agricultural offset projects.
Resumo:
Nitrous oxide (N2O) is a major greenhouse gas (GHG) product of intensive agriculture. Fertilizer nitrogen (N) rate is the best single predictor of N2O emissions in row-crop agriculture in the US Midwest. We use this relationship to propose a transparent, scientifically robust protocol that can be utilized by developers of agricultural offset projects for generating fungible GHG emission reduction credits for the emerging US carbon cap and trade market. By coupling predicted N2O flux with the recently developed maximum return to N (MRTN) approach for determining economically profitable N input rates for optimized crop yield, we provide the basis for incentivizing N2O reductions without affecting yields. The protocol, if widely adopted, could reduce N2O from fertilized row-crop agriculture by more than 50%. Although other management and environmental factors can influence N2O emissions, fertilizer N rate can be viewed as a single unambiguous proxy—a transparent, tangible, and readily manageable commodity. Our protocol addresses baseline establishment, additionality, permanence, variability, and leakage, and provides for producers and other stakeholders the economic and environmental incentives necessary for adoption of agricultural N2O reduction offset projects.