4 resultados para neuroblastoma

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: This study provides the latest available relative survival data for Australian childhood cancer patients. Methods: Data from the population-based Australian Paediatric Cancer Registry were used to describe relative survival outcomes using the period method for 11 903 children diagnosed with cancer between 1983 and 2006 and prevalent at any time between 1997 and 2006. Results: The overall relative survival was 90.4% after 1 year, 79.5% after 5 years and 74.7% after 20 years. Where information onstage at diagnosis was available (lymphomas, neuroblastoma, renal tumours and rhabdomyosarcomas), survival was significantly poorer for more-advanced stage. Survival was lower among infants compared with other children for those diagnosed with leukaemia, tumours of the central nervous system and renal tumours but higher for neuroblastoma. Recent improvements in overall childhood cancer survival over time are mainly because of improvements among leukaemia patients. Conclusion: The high and improving survival prognosis for children diagnosed with cancer in Australia is consistent with various international estimates. However, a 5-year survival estimate of 79% still means that many children who are diagnosed with cancer will die within 5 years, whereas others have long-term health morbidities and complications associated with their treatments. It is hoped that continued developments in treatment protocols will result in further improvements in survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Electrospun nanofibers represent potent guidance substrates for nervous tissue repair. Development of nanofiber-based scaffolds for CNS repair requires, as a first step, an understanding of appropriate neural cell type-substrate interactions. Materials & methods: Astrocyte–nanofiber interactions (e.g., adhesion, proliferation, process extension and migration) were studied by comparing human neural progenitor-derived astrocytes (hNP-ACs) and a human astrocytoma cell line (U373) with aligned polycaprolactone (PCL) nanofibers or blended (25% type I collagen/75% PCL) nanofibers. Neuron–nanofiber interactions were assessed using a differentiated human neuroblastoma cell line (SH-SY5Y). Results & discussion: U373 cells and hNP-AC showed similar process alignment and length when associated with PCL or Type I collagen/PCL nanofibers. Cell adhesion and migration by hNP-AC were clearly improved by functionalization of nanofiber surfaces with type I collagen. Functionalized nanofibers had no such effect on U373 cells. Another clear difference between the U373 cells and hNP-AC interactions with the nanofiber substrate was proliferation; the cell line demonstrating strong proliferation, whereas the hNP-AC line showed no proliferation on either type of nanofiber. Long axonal growth (up to 600 µm in length) of SH-SY5Y neurons followed the orientation of both types of nanofibers even though adhesion of the processes to the fibers was poor. Conclusion: The use of cell lines is of only limited predictive value when studying cell–substrate interactions but both morphology and alignment of human astrocytes were affected profoundly by nanofibers. Nanofiber surface functionalization with collagen significantly improved hNP-AC adhesion and migration. Alternative forms of functionalization may be required for optimal axon–nanofiber interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: Monoamine Oxidase (MAO) enzymes catabolise, and thus modulate abundance of, neurotransmitters in the brain. Variation in MAO enzyme activity has been linked to alcohol abuse behaviour, although the molecular mechanisms underlying this association are not understood. The present study evaluated relative gene-transcript abundance of MAO-A and MAO-B in the SH-SY5Y human neuroblastoma cell-line in response to ethanol exposure and following ethanol withdrawal. We found that each isoform of MAO was significantly transcriptionally up-regulated 55-80% in response to 100mM ethanol exposure. This trend was maintained following prolonged exposures (24 h-72 h) and with short exposures (24 h) followed by a period of ethanol withdrawal, suggesting that the transcriptional regulation is the result of a cellular change occurring within the first 24 hours of ethanol exposure. These results suggest a role for MAO transcriptional regulation in the complex neurobiochemical changes underlying alcohol addiction.