17 resultados para nanoribbons

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene nanoribbon (GNR) with free edges demonstrates unique pre-existing edge energy and edge stress, leading to non-flat morphologies. Using molecular dynamics (MD) methods, we evaluated edge energies as well as edge stresses for four different edge types, including regular edges (armchair and zigzag), armchair edge terminated with hydrogen and reconstructed armchair. The results showed that compressive stress exists in the regular and hydrogen-terminated edges along the edge direction. In contrast, the reconstructed armchair edge is generally subject to tension. Furthermore, we also investigated shape transition between flat and rippled configurations of GNRs with different free edges. It was found that the pre-existing stress at free edges can greatly influence the initial energy state and the shape transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated for the first time by ab initio density functional calculation and molecular dynamics simulation that C0.5(BN)0.5 armchair single-walled nanotubes (NT) are gapless semiconductors and can be spontaneously formed via the hybrid connection of graphene/BN Nanoribbons (GNR/BNNR) at room temperature. The direct synthesis of armchair C0.5(BN)0.5 via the hybrid connection of GNR/BNNR is predicted to be both thermodynamically and dynamically stable. Such novel armchair C0.5(BN)0.5 NTs possess enhanced conductance as that observed in GNRs. Additionally, the zigzag C0.5(BN)0.5 SWNTs are narrow band gap semiconductors, which may have potential application for light emission. In light of recent experimental progress and the enhanced degree of control in the synthesis of GNRs and BNNR, our results highlight an interesting avenue for synthesizing a novel specific type of C0.5(BN)0.5 nanotube (gapless or narrow direct gap semiconductor), with potentially important applications in BNC-based nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of bare graphene nanoribbons (GNRs) was investigated by ab initio density functional theory calculations with both the local density approximation (LDA) and the generalized gradient approximation (GGA). Remarkably, two bare 8-GNRs with zigzag-shaped edges are predicted to form an (8, 8) armchair single-wall carbon nanotube (SWCNT) without any obvious activation barrier. The formation of a (10, 0) zigzag SWCNT from two bare 10-GNRs with armchair-shaped edges has activation barriers of 0.23 and 0.61 eV for using the LDA and the revised PBE exchange correlation functional, respectively, Our results suggest a possible route to control the growth of specific types SWCNT via the interaction of GNRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene nanoribbon (GNR) with free edges can exhibit non-flat morphologies due to pre-existing edge stress. Using molecular dynamics (MD) simulations, we investigate the free-edge effect on the shape transition in GNRs with different edge types, including regular (armchair and zigzag), armchair terminated with hydrogen and reconstructed armchair. The results show that initial edge stress and energy are dependent on the edge configurations. It is confirmed that pre-strain on the free edges is a possible way to limit the random shape transition of GNRs. In addition, the influence of surface attachment on the shape transition is also investigated in this work. It is found that surface attachment can lead to periodic ripples in GNRs, dependent on the initial edge configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on its enticing properties, graphene has been envisioned with applications in the area of electronics, photonics, sensors, bioapplications and others. To facilitate various applications, doping has been frequently used to manipulate the properties of graphene. Despite a number of studies conducted on doped graphene regarding its electrical and chemical properties, the impact of doping on the mechanical properties of graphene has been rarely discussed. A systematic study of the vibrational properties of graphene doped with nitrogen and boron is performed by means of a molecular dynamics simulation. The influence from different density or species of dopants has been assessed. It is found that the impacts on the quality factor, Q, resulting from different densities of dopants vary greatly, while the influence on the resonance frequency is insignificant. The reduction of the resonance frequency caused by doping with boron only is larger than the reduction caused by doping with both boron and nitrogen. This study gives a fundamental understanding of the resonance of graphene with different dopants, which may benefit their application as resonators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the study of the thermal transport management of monolayer graphene allotrope nanoribbons (size ∼20 × 4 nm2) by the modulation of their structures via molecular dynamics simulations. The thermal conductivity of graphyne (GY)-like geometries is observed to decrease monotonously with increasing number of acetylenic linkages between adjacent hexagons. Strikingly, by incorporating those GY or GY-like structures, the thermal performance of graphene can be effectively engineered. The resulting hetero-junctions possess a sharp local temperature jump at the interface, and show a much lower effective thermal conductivity due to the enhanced phonon–phonon scattering. More importantly, by controlling the percentage, type and distribution pattern of the GY or GY-like structures, the hetero-junctions are found to exhibit tunable thermal transport properties (including the effective thermal conductivity, interfacial thermal resistance and rectification). This study provides a heuristic guideline to manipulate the thermal properties of 2D carbon networks, ideal for application in thermoelectric devices with strongly suppressed thermal conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanoscrolls (CNSs) are one of the carbon-based nanomaterials similar to carbon nanotubes (CNTs) but are not widely studied in spite of their great potential applications. Their practical applications are hindered by the challenging fabrication of the CNSs. A physical approach has been proposed recently to fabricate the CNS by rolling up a monolayer graphene nanoribbon (GNR) around a CNT driven by the interaction energy between them. In this study, we perform extensive molecular dynamics (MD) simulations to investigate the various factors that impact the formation of the CNS from GNR. Our simulation results show that the formation of the CNS is sensitive to the length of the CNT and temperature. When the GNR is functionalized with hydrogen, the formation of the CNS is determined by the density and distribution of the hydrogen atoms. Graphyne, the allotrope of graphene, is inferior to graphene in the formation of the CNS due to the weaker bonds and the associated smaller atom density. The mechanism behind the rolling of GNR into CNS lies in the balance between the GNR–CNT van der Waals (vdW) interactions and the strain energy of GNR. The present work reveals new important insights and provides useful guidelines for the fabrication of the CNS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since its initial proposal in 1998, alkaline hydrothermal processing has rapidly become an established technology for the production of titanate nanostructures. This simple, highly reproducible process has gained a strong research following since its conception. However, complete understanding and elucidation of nanostructure phase and formation have not yet been achieved. Without fully understanding phase, formation, and other important competing effects of the synthesis parameters on the final structure, the maximum potential of these nanostructures cannot be obtained. Therefore this study examined the influence of synthesis parameters on the formation of titanate nanostructures produced by alkaline hydrothermal treatment. The parameters included alkaline concentration, hydrothermal temperature, the precursor material‘s crystallite size and also the phase of the titanium dioxide precursor (TiO2, or titania). The nanostructure‘s phase and morphology was analysed using X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy. X-ray photoelectron spectroscopy (XPS), dynamic light scattering (non-invasive backscattering), nitrogen sorption, and Rietveld analysis were used to determine phase, for particle sizing, surface area determinations, and establishing phase concentrations, respectively. This project rigorously examined the effect of alkaline concentration and hydrothermal temperature on three commercially sourced and two self-prepared TiO2 powders. These precursors consisted of both pure- or mixed-phase anatase and rutile polymorphs, and were selected to cover a range of phase concentrations and crystallite sizes. Typically, these precursors were treated with 5–10 M sodium hydroxide (NaOH) solutions at temperatures between 100–220 °C. Both nanotube and nanoribbon morphologies could be produced depending on the combination of these hydrothermal conditions. Both titania and titanate phases are comprised of TiO6 units which are assembled in different combinations. The arrangement of these atoms affects the binding energy between the Ti–O bonds. Raman spectroscopy and XPS were therefore employed in a preliminary study of phase determination for these materials. The change in binding energy from a titania to a titanate binding energy was investigated in this study, and the transformation of titania precursor into nanotubes and titanate nanoribbons was directly observed by these methods. Evaluation of the Raman and XPS results indicated a strengthening in the binding energies of both the Ti (2p3/2) and O (1s) bands which correlated to an increase in strength and decrease in resolution of the characteristic nanotube doublet observed between 320 and 220 cm.1 in the Raman spectra of these products. The effect of phase and crystallite size on nanotube formation was examined over a series of temperatures (100.200 �‹C in 20 �‹C increments) at a set alkaline concentration (7.5 M NaOH). These parameters were investigated by employing both pure- and mixed- phase precursors of anatase and rutile. This study indicated that both the crystallite size and phase affect nanotube formation, with rutile requiring a greater driving force (essentially �\harsher. hydrothermal conditions) than anatase to form nanotubes, where larger crystallites forms of the precursor also appeared to impede nanotube formation slightly. These parameters were further examined in later studies. The influence of alkaline concentration and hydrothermal temperature were systematically examined for the transformation of Degussa P25 into nanotubes and nanoribbons, and exact conditions for nanostructure synthesis were determined. Correlation of these data sets resulted in the construction of a morphological phase diagram, which is an effective reference for nanostructure formation. This morphological phase diagram effectively provides a .recipe book�e for the formation of titanate nanostructures. Morphological phase diagrams were also constructed for larger, near phase-pure anatase and rutile precursors, to further investigate the influence of hydrothermal reaction parameters on the formation of titanate nanotubes and nanoribbons. The effects of alkaline concentration, hydrothermal temperature, crystallite phase and size are observed when the three morphological phase diagrams are compared. Through the analysis of these results it was determined that alkaline concentration and hydrothermal temperature affect nanotube and nanoribbon formation independently through a complex relationship, where nanotubes are primarily affected by temperature, whilst nanoribbons are strongly influenced by alkaline concentration. Crystallite size and phase also affected the nanostructure formation. Smaller precursor crystallites formed nanostructures at reduced hydrothermal temperature, and rutile displayed a slower rate of precursor consumption compared to anatase, with incomplete conversion observed for most hydrothermal conditions. The incomplete conversion of rutile into nanotubes was examined in detail in the final study. This study selectively examined the kinetics of precursor dissolution in order to understand why rutile incompletely converted. This was achieved by selecting a single hydrothermal condition (9 M NaOH, 160 °C) where nanotubes are known to form from both anatase and rutile, where the synthesis was quenched after 2, 4, 8, 16 and 32 hours. The influence of precursor phase on nanostructure formation was explicitly determined to be due to different dissolution kinetics; where anatase exhibited zero-order dissolution and rutile second-order. This difference in kinetic order cannot be simply explained by the variation in crystallite size, as the inherent surface areas of the two precursors were determined to have first-order relationships with time. Therefore, the crystallite size (and inherent surface area) does not affect the overall kinetic order of dissolution; rather, it determines the rate of reaction. Finally, nanostructure formation was found to be controlled by the availability of dissolved titanium (Ti4+) species in solution, which is mediated by the dissolution kinetics of the precursor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possi-ble morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of gra-phene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The practical number of charge carriers loaded is crucial to the evaluation of the capacity performance of carbon-based electrodes in service, and cannot be easily addressed experimentally. In this paper, we report a density functional theory study of charge carrier adsorption onto zigzag edge-shaped graphene nanoribbons (ZGNRs), both pristine and incorporating edge substitution with boron, nitrogen or oxygen atoms. All edge substitutions are found to be energetically favorable, especially in oxidized environments. The maximal loading of protons onto the substituted ZGNR edges obeys a rule of [8-n-1], where n is the number of valence electrons of the edge-site atom constituting the adsorption site. Hence, a maximum charge loading is achieved with boron substitution. This result correlates in a transparent manner with the electronic structure characteristics of the edge atom. The boron edge atom, characterized by the most empty p band, facilitates more than the other substitutional cases the accommodation of valence electrons transferred from the ribbon, induced by adsorption of protons. This result not only further confirms the possibility of enhancing charge storage performance of carbon-based electrochemical devices through chemical functionalization but also, more importantly, provides the physical rationale for further design strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ab initio density functional calculations were performed to study the geometry and electronic structure of a prototypical zigzag AlN nanoribbon. We find that H-terminated zigzag 10-AlN nanoribbons have a non-direct band gap and are nonmagnetic. When a transverse electric field is applied, the band gap decreases monotonically with the strength of field E. Zigzag AlN nanoribbons with the N edge unpassivated display strong spin-polarization close to the Fermi level, which will result in spin-anisotropic transport. These results suggest potential applications for the development of AlN nanoribbon-based nanoelectronics applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural and electronic properties have been studied for Boron Nitride nanoribbons (BNNR) with both zigzag and armchair shaped edge (Z-BNNR and A-BNNR) by first-principle spin-polarized total energy calculations. We found that the energy band gap of Z-BNNR is indirect and decreases monotonically with the increasing ribbon width, whereas direct energy band gap oscillation was observed for A-BNNRs. Additionally, C-substitution at either single boron or nitrogen atom site in BNNRs could induce spontaneous magnetization. Our results could be potentially useful to design magnetic nano-devices based on BNNRs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possible morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of graphene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review paper presents historical perspectives, recent advances and future directions in the multidisciplinary research field of plasma nanoscience. The current status and future challenges are presented using a three-dimensional framework. The first and the largest dimension covers the most important classes of nanoscale objects (nanostructures, nanofeatures and nanoassemblies/nanoarchitectures) and materials systems, namely carbon nanotubes, nanofibres, graphene, graphene nanoribbons, graphene nanoflakes, nanodiamond and related carbon-based nanostructures; metal, silicon and other inorganic nanoparticles and nanostructures; soft organic nanomaterials; nano-biomaterials; biological objects and nanoscale plasma etching. In the second dimension, we discuss the most common types of plasmas and plasma reactors used in nanoscale plasma synthesis and processing. These include low-temperature non-equilibrium plasmas at low and high pressures, thermal plasmas, high-pressure microplasmas, plasmas in liquids and plasma–liquid interactions, high-energy-density plasmas, and ionized physical vapour deposition as well as some other plasma-enhanced nanofabrication techniques. In the third dimension, we outline some of the 'Grand Science Challenges' and 'Grand Socio-economic Challenges' to which significant contributions from plasma nanoscience-related research can be expected in the near future. The urgent need for a stronger focus on practical, outcome-oriented research to tackle the grand challenges is emphasized and concisely formulated as from controlled complexity to practical simplicity in solving grand challenges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Layered materials exhibit intriguing electronic characteristics and the search for new types of two-dimensional (2D) structures is of importance for future device fabrication. Using state-of-art first principle calculations, we identify and characterize the structural and electronic properties of two 2D layered arsenic materials, namely, arsenic and its alloy AsSb. The stable 2D structural configuration of arsenic is confirmed to be the low-buckled two-dimensional hexagonal structure by phonon and binding energy calculations. The monolayer exhibits indirect semiconducting properties with gap around 1.5 eV (corrected to 2.2 eV by hybrid function), which can be modulated into a direct semiconductor within a small amount of tensile strain. These semiconducting properties are preserved when cutting into 1D nanoribbons, but the band gap is edge dependent. It is interesting to find that an indirect to direct gap transition can be achieved under strain modulation of the armchair ribbon. Essentially the same phenomena can be found in layered AsSb, except a weak Rashba induced band splitting is present in AsSb due to the nonsymmetric structure and spin orbit coupling. When an additional layer is added on the top, a semiconductor–metal transition will occur. The findings here broaden the family of 2D materials beyond graphene and transition metal dichalcogenides and provide useful information for experimental fabrication of new layered materials with possible application in optoelectronics.