627 resultados para morphometric analysis

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose The aim of the study was to determine the association, agreement, and detection capability of manual, semiautomated, and fully automated methods of corneal nerve fiber length (CNFL) quantification of the human corneal subbasal nerve plexus (SNP). Methods Thirty-three participants with diabetes and 17 healthy controls underwent laser scanning corneal confocal microscopy. Eight central images of the SNP were selected for each participant and analyzed using manual (CCMetrics), semiautomated (NeuronJ), and fully automated (ACCMetrics) software to quantify the CNFL. Results For the entire cohort, mean CNFL values quantified by CCMetrics, NeuronJ, and ACCMetrics were 17.4 ± 4.3 mm/mm2, 16.0 ± 3.9 mm/mm2, and 16.5 ± 3.6 mm/mm2, respectively (P < 0.01). CNFL quantified using CCMetrics was significantly higher than those obtained by NeuronJ and ACCMetrics (P < 0.05). The 3 methods were highly correlated (correlation coefficients 0.87–0.98, P < 0.01). The intraclass correlation coefficients were 0.87 for ACCMetrics versus NeuronJ and 0.86 for ACCMetrics versus CCMetrics. Bland–Altman plots showed good agreement between the manual, semiautomated, and fully automated analyses of CNFL. A small underestimation of CNFL was observed using ACCMetrics with increasing the amount of nerve tissue. All 3 methods were able to detect CNFL depletion in diabetic participants (P < 0.05) and in those with peripheral neuropathy as defined by the Toronto criteria, compared with healthy controls (P < 0.05). Conclusions Automated quantification of CNFL provides comparable neuropathy detection ability to manual and semiautomated methods. Because of its speed, objectivity, and consistency, fully automated analysis of CNFL might be advantageous in studies of diabetic neuropathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Birds exhibit a huge array of behavior, ecology and physiology, and occupy nearly every environment on earth, ranging from the desert outback of Australia to the tropical rain forests of Panama. Some birds have adopted a fully nocturnal lifestyle, such as the barn owl and kiwi, while others, such as the albatross, spend nearly their entire life flying over the ocean. Each species has evolved unique adaptations over millions of years to function in their respective niche. In order to increase processing power or network efficiency, many of these adaptations require enlargements and/or specializations of the brain as a whole or of specific brain regions. In this study, we examine the relative size and morphology of 9 telencephalic regions in a number of Paleognath and Neognath birds and relate the findings to differences in behavior and sensory ecology. We pay particular attention to those species that have undergone a relative enlargement of the telencephalon to determine whether this relative increase in telencephalic size is homogeneous across different brain regions or whether particular regions have become differentially enlarged. The analysis indicates that changes in the relative size of telencephalic regions are not homogeneous, with every species showing hypertrophy or hypotrophy of at least one of them. The three-dimensional structure of these regions in different species was also variable, in particular that of the mesopallium in kiwi. The findings from this study provide further evidence that the changes in relative brain size in birds reflect a process of mosaic evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. The dimensions of the thoracic intervertebral foramen in adolescent idiopathic scoliosis (AIS) have not previously been quantified. During posterior approach scoliosis correction surgery pedicle screws may occasionally breach into the foramen. Better understanding of the dimensions of the foramen may be useful in surgical planning. This study describes a reproducible method for measurement of the thoracic foramen in AIS using computerized tomography (CT). Methods. In 23 pre-operative female patients with Lenke 1 type AIS with right side convexity major curves confined to the thoracic spine the foraminal height (FH), foraminal width (FW), pedicle to superior articular process distance (P-SAP) and cross sectional foraminal area (FA) were measured using multiplanar reconstructed CT. Measurements were made at entrance, midpoint and exit of the thoracic foramina from T1/T2 to T11/T12. Results were correlated with potential dependent variables of major curve Cobb Angle measured on X-ray and CT, Age, Weight, Lenke classification subtype, Risser Grade and number of spinal levels in the major curve. Results. The FH, FW, P-SAP and FA dimensions and ratios are all significantly larger on the convexity of the major curve and maximal at or close to the apex. Mean thoracic foraminal dimensions change in a predictable manner relative to position on the major thoracic curve. There was no significant correlation with the measured foraminal dimensions or ratios and the potential dependent variables. The average ratio of convexity to concavity dimensions at the apex foramina for entrance, midpoint and exit respectively are FH (1.50, 1.38, 1.25), FW (1.28, 1.30, 0.98), FA (2.06, 1.84, 1.32), P-SAP (1.61, 1.47, 1.30). Conclusion. Foraminal dimensions of the thoracic spine are significantly affected by AIS. Foraminal dimensions have a predictable convexity to concavity ratio relative to the proximity to the major curve apex. Surgeons should be aware of these anatomical differences during scoliosis correction surgery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Current forensic practice in age estimation relies on the application of morphological standards as a means to characterize complex threedimensional skeletal surfaces. Research in our laboratory has demonstrated that the application of the morphologically based Suchey-Brooks method to a contemporary Queensland, Australian population demonstrated significant inaccuracy in age-estimation. Consequently, this study presents preliminary results to quantify age-related skeletal changes of the pubic symphysis in Queensland individuals using novel geometric and micro-architectural protocols that have the potential of improving age estimation in the forensic context. Computed tomography scans of the right and left pubis were obtained from Caucasian individuals aged 15–70 years (n=195) from the Queensland Health Forensic and Scientific Services. Morphometric variables including surface area, circumference, maximum height and width of the symphyseal surface, and micro-architectural assessment of cortical and trabecular bone structure were conducted in Rapidform XOS and Osteomeasure, respectively. Morphometric analysis demonstrated increases in maximum height and width of the surface with age independent of gender, with most significant (P<0.05) changes between the 25–34 and 55–64 year subsets. Sexual dimorphism and bilateral asymmetry were prominent features in the Queensland population. Micro-architectural analysis demonstrated degradation of cortical composition with age, with differential bone resorption between the medial, ventral and dorsal aspects of the symphysis. The ability to quantitatively model age-related changes to the pubic symphysis provides potential for future methodological refinement, where rigor and robust geometric assessment of the surface may remove the subjectivity associated with aging the pubic symphysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four morphologically cryptic species of the Bactrocera dorsalis fruit fly complex (B. dorsalis s.s., B. papayae, B. carambolae and B. philippinensis) are serious agricultural pests. As they are difficult to diagnose using traditional taxonomic techniques, we examined the potential for geometric morphometric analysis of wing size and shape to discriminate between them. Fifteen wing landmarks generated size and shape data for 245 specimens for subsequent comparisons among three geographically distinct samples of each species. Intraspecific wing size was significantly different within samples of B. carambolae and B. dorsalis s.s. but not within samples of B. papayae or B. philippinensis. Although B. papayae had the smallest wings (average centroid size=6.002 mm±0.061 SE) and B. dorsalis s.s. the largest (6.349 mm±0.066 SE), interspecific wing size comparisons were generally non-informative and incapable of discriminating species. Contrary to the wing size data, canonical variate analysis based on wing shape data discriminated all species with a relatively high degree of accuracy; individuals were correctly reassigned to their respective species on average 93.27% of the time. A single sample group of B. carambolae from locality 'TN Malaysia' was the only sample to be considerably different from its conspecific groups with regards to both wing size and wing shape. This sample was subsequently deemed to have been originally misidentified and likely represents an undescribed species. We demonstrate that geometric morphometric techniques analysing wing shape represent a promising approach for discriminating between morphologically cryptic taxa of the B. dorsalis species complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

After attending this presentation, attendees will gain awareness of: (1) the error and uncertainty associated with the application of the Suchey-Brooks (S-B) method of age estimation of the pubic symphysis to a contemporary Australian population; (2) the implications of sexual dimorphism and bilateral asymmetry of the pubic symphysis through preliminary geometric morphometric assessment; and (3) the value of three-dimensional (3D) autopsy data acquisition for creating forensic anthropological standards. This presentation will impact the forensic science community by demonstrating that, in the absence of demographically sound skeletal collections, post-mortem autopsy data provides an exciting platform for the construction of large contemporary ‘virtual osteological libraries’ for which forensic anthropological research can be conducted on Australian individuals. More specifically, this study assesses the applicability and accuracy of the S-B method to a contemporary adult population in Queensland, Australia, and using a geometric morphometric approach, provides an insight to the age-related degeneration of the pubic symphysis. Despite the prominent use of the Suchey-Brooks (1990) method of age estimation in forensic anthropological practice, it is subject to intrinsic limitations, with reports of differential inter-population error rates between geographical locations1-4. Australian forensic anthropology is constrained by a paucity of population specific standards due to a lack of repositories of documented skeletons. Consequently, in Australian casework proceedings, standards constructed from predominately American reference samples are applied to establish a biological profile. In the global era of terrorism and natural disasters, more specific population standards are required to improve the efficiency of medico-legal death investigation in Queensland. The sample comprises multi-slice computed tomography (MSCT) scans of the pubic symphysis (slice thickness: 0.5mm, overlap: 0.1mm) on 195 individuals of caucasian ethnicity aged 15-70 years. Volume rendering reconstruction of the symphyseal surface was conducted in Amira® (v.4.1) and quantitative analyses in Rapidform® XOS. The sample was divided into ten-year age sub-sets (eg. 15-24) with a final sub-set of 65-70 years. Error with respect to the method’s assigned means were analysed on the basis of bias (directionality of error), inaccuracy (magnitude of error) and percentage correct classification of left and right symphyseal surfaces. Morphometric variables including surface area, circumference, maximum height and width of the symphyseal surface and micro-architectural assessment of cortical and trabecular bone composition were quantified using novel automated engineering software capabilities. The results of this study demonstrated correct age classification utilizing the mean and standard deviations of each phase of the S-B method of 80.02% and 86.18% in Australian males and females, respectively. Application of the S-B method resulted in positive biases and mean inaccuracies of 7.24 (±6.56) years for individuals less than 55 years of age, compared to negative biases and mean inaccuracies of 5.89 (±3.90) years for individuals greater than 55 years of age. Statistically significant differences between chronological and S-B mean age were demonstrated in 83.33% and 50% of the six age subsets in males and females, respectively. Asymmetry of the pubic symphysis was a frequent phenomenon with 53.33% of the Queensland population exhibiting statistically significant (χ2 - p<0.01) differential phase classification of left and right surfaces of the same individual. Directionality was found in bilateral asymmetry, with the right symphyseal faces being slightly older on average and providing more accurate estimates using the S-B method5. Morphometric analysis verified these findings, with the left surface exhibiting significantly greater circumference and surface area than the right (p<0.05). Morphometric analysis demonstrated an increase in maximum height and width of the surface with age, with most significant changes (p<0.05) occurring between the 25-34 and 55-64 year age subsets. These differences may be attributed to hormonal components linked to menopause in females and a reduction in testosterone in males. Micro-architectural analysis demonstrated degradation of cortical composition with age, with differential bone resorption between the medial, ventral and dorsal surfaces of the pubic symphysis. This study recommends that the S-B method be applied with caution in medico-legal death investigations of unknown skeletal remains in Queensland. Age estimation will always be accompanied by error; therefore this study demonstrates the potential for quantitative morphometric modelling of age related changes of the pubic symphysis as a tool for methodological refinement, providing a rigor and robust assessment to remove the subjectivity associated with current pelvic aging methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: An arteriovenous loop (AVL) enclosed in a polycarbonate chamber in vivo, produces a fibrin exudate which acts as a provisional matrix for the development of a tissue engineered microcirculatory network. Objectives: By administering enoxaparin sodium - an inhibitor of fibrin polymerization, the significance of fibrin scaffold formation on AVL construct size (including the AVL, fibrin scaffold, and new tissue growth into the fibrin), growth, and vascularization were assessed and compared to controls. Methods: In Sprague Dawley rats, an AVL was created on femoral vessels and inserted into a polycarbonate chamber in the groin in 3 control groups (Series I) and 3 experimental groups (Series II). Two hours before surgery and 6 hours post-surgery, saline (Series I) or enoxaparin sodium (0.6 mg/kg, Series II) was administered intra-peritoneally. Thereafter, the rats were injected daily with saline (Series I) or enoxaparin sodium (1.5 mg/kg, Series II) until construct retrieval at 3, 10, or 21 days. The retrieved constructs underwent weight and volume measurements, and morphologic/morphometric analysis of new tissue components. Results: Enoxaparin sodium treatment resulted in the development of smaller AVL constructs at 3, 10, and 21 days. Construct weight and volume were significantly reduced at 10 days (control weight 0.337 ± 0.016 g [Mean ± SEM] vs treated 0.228 ± 0.048, [P < .001]: control volume 0.317 ± 0.015 mL vs treated 0.184 ± 0.039 mL [P < .01]) and 21 days (control weight 0.306 ± 0.053 g vs treated 0.198 ± 0.043 g [P < .01]: control volume 0.285 ± 0.047 mL vs treated 0.148 ± 0.041 mL, [P < .01]). Angiogenesis was delayed in the enoxaparin sodium-treated constructs with the absolute vascular volume significantly decreased at 10 days (control vascular volume 0.029 ± 0.03 mL vs treated 0.012 ± 0.002 mL [P < .05]). Conclusion: In this in vivo tissue engineering model, endogenous, extra-vascularly deposited fibrin volume determines construct size and vascular growth in the first 3 weeks and is, therefore, critical to full construct development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose We examined the age-dependent alterations and longitudinal course of subbasal nerve plexus (SNP) morphology in healthy individuals. Methods Laser-scanning corneal confocal microscopy, ocular screening, and health and metabolic assessment were performed on 64 healthy participants at baseline and at 12-month intervals for 3 years. At each annual visit, eight central corneal images of the SNP were selected and analyzed using a fully-automated analysis system to quantify corneal nerve fiber length (CNFL). Two linear mixed model approaches were fitted to examine the relationship between age and CNFL, and the longitudinal changes of CNFL over three years. Results At baseline, mean age was 51.9 ± 14.7 years. The cohort was sex balanced (χ2 = 0.56, P = 0.45). Age (t = 1.6, P = 0.12) and CNFL (t = -0.50, P = 0.62) did not differ between sexes. A total of 52 participants completed the 36-month visit and 49 participants completed all visits. Age had a significant effect on CNFL (F1,33 = 5.67, P = 0.02) with a linear decrease of 0.05 mm/mm2 in CNFL per one year increase in age. No significant change in CNFL was observed over the 36-month period (F1,55 = 0.69, P = 0.41). Conclusions The CNFL showed a stable course over a 36-month period in healthy individuals, although there was a slight linear reduction in CNFL with age. The findings of this study have implications for understanding the time-course of the effect of pathology and surgical or therapeutic interventions on the morphology of the SNP, and serves to confirm the suitability of CNFL as a screening/monitoring marker for peripheral neuropathies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time for conducting Preventive Maintenance (PM) on an asset is often determined using a predefined alarm limit based on trends of a hazard function. In this paper, the authors propose using both hazard and reliability functions to improve the accuracy of the prediction particularly when the failure characteristic of the asset whole life is modelled using different failure distributions for the different stages of the life of the asset. The proposed method is validated using simulations and case studies.