10 resultados para monarch butterflies

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Butterfly long-wavelength (L) photopigments are interesting for comparative studies of adaptive evolution because of the tremendous phenotypic variation that exists in their wavelength of peak absorbance (lambda(max) value). Here we present a comprehensive survey of L photopigment variation by measuring lambda(max) in 12 nymphalid and 1 riodinid species using epi-microspectrophotometry. Together with previous data, we find that L photopigment lambda(max) varies from 510-565 nm in 22 nymphalids, with an even broader 505- to 600-nm range in riodinids. We then surveyed the L opsin genes for which lambda(max) values are available as well as from related taxa and found 2 instances of L opsin gene duplication within nymphalids, in Hermeuptychia hermes and Amathusia phidippus, and 1 instance within riodinids, in the metalmark butterfly Apodemia mormo. Using maximum parsimony and maximum likelihood ancestral state reconstructions to map the evolution of spectral shifts within the L photopigments of nymphalids, we estimate the ancestral pigment had a lambda(max) = 540 nm +/- 10 nm standard error and that blueshifts in wavelength have occurred at least 4 times within the family. We used ancestral state reconstructions to investigate the importance of several amino acid substitutions (Ile17Met, Ala64Ser, Asn70Ser, and Ser137Ala) previously shown to have evolved under positive selection that are correlated with blue spectral shifts. These reconstructions suggest that the Ala64Ser substitution has indeed occurred along the newly identified blueshifted L photopigment lineages. Substitutions at the other 3 sites may also be involved in the functional diversification of L photopigments. Our data strongly suggest that there are limits to the evolution of L photopigment spectral shifts among species with only one L opsin gene and that opsin gene duplication broadens the potential range of lambda(max) values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Butterflies and primates are interesting for comparative color vision studies, because both have evolved middle- (M) and long-wavelength- (L) sensitive photopigments with overlapping absorbance spectrum maxima (lambda(max) values). Although positive selection is important for the maintenance of spectral variation within the primate pigments, it remains an open question whether it contributes similarly to the diversification of butterfly pigments. To examine this issue, we performed epimicrospectrophotometry on the eyes of five Limenitis butterfly species and found a 31-nm range of variation in the lambda(max) values of the L-sensitive photopigments (514-545 nm). We cloned partial Limenitis L opsin gene sequences and found a significant excess of replacement substitutions relative to polymorphisms among species. Mapping of these L photopigment lambda(max) values onto a phylogeny revealed two instances within Lepidoptera of convergently evolved L photopigment lineages whose lambda(max) values were blue-shifted. A codon-based maximum-likelihood analysis indicated that, associated with the two blue spectral shifts, four amino acid sites (Ile17Met, Ala64Ser, Asn70Ser, and Ser137Ala) have evolved substitutions in parallel and exhibit significant d(N)/d(S) >1. Homology modeling of the full-length Limenitis arthemis astyanax L opsin placed all four substitutions within the chromophore-binding pocket. Strikingly, the Ser137Ala substitution is in the same position as a site that in primates is responsible for a 5- to 7-nm blue spectral shift. Our data show that some of the same amino acid sites are under positive selection in the photopigments of both butterflies and primates, spanning an evolutionary distance >500 million years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opsins are ancient molecules that enable animal vision by coupling to a vitamin-derived chromophore to form lightsensitive photopigments. The primary drivers of evolutionary diversification in opsins are thought to be visual tasks related to spectral sensitivity and color vision. Typically, only a few opsin amino acid sites affect photopigment spectral sensitivity. We show that opsin genes of the North American butterfly Limenitis arthemis have diversified along a latitudinal cline, consistent with natural selection due to environmental factors. We sequenced single nucleotide(SNP) polymorphisms in the coding regions of the ultraviolet (UVRh), blue (BRh), and long-wavelength (LWRh) opsin genes from ten butterfly populations along the eastern United States and found that a majority of opsin SNPs showed significant clinal variation. Outlier detection and analysis of molecular variance indicated that many SNPs are under balancing selection and show significant population structure. This contrasts with what we found by analysing SNPs in the wingless and EF-1 alpha loci, and from neutral amplified fragment length polymorphisms, which show no evidence of significant locus-specific or genome-wide structure among populations. Using a combination of functional genetic and physiological approaches, including expression in cell culture, transgenic Drosophila, UV-visible spectroscopy, and optophysiology, we show that key BRh opsin SNPs that vary clinally have almost no effect on spectral sensitivity. Our results suggest that opsin diversification in this butterfly is more consistent with natural selection unrelated to spectral tuning. Some of the clinally varying SNPs may instead play a role in regulating opsin gene expression levels or the thermostability of the opsin protein. Lastly, we discuss the possibility that insect opsins might have important, yet-to-be elucidated, adaptive functions in mediating animal responses to abiotic factors, such as temperature or photoperiod.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many small firms increasingly operate in markets under siege from new entrants who exploit the technologies associated with the Internet's World Wide Web (the web). In these circumstances, interpreting the operating environment is like a vu jade, the opposite of deja vu, a time in space where they have never been, have no idea what they are doing and who it is that could help them. Through the use of the story of the Caterpillar and the Butterfly, this paper considers the inherent difficulties faced by small firms considering the prospect of becoming an e-firm. When considered from an evolutionary perspective, the journey from small firm to small e-firm is not seen as one of choice, but rather one of necessity. In such markets, a race currently appears to exist between entrepreneurs exploiting the web's technologies, and the process of natural selection acting upon firms whose routines have lost favour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The striking color patterns of butterflies and birds have long interested biologists. But how these animals see color is less well understood. Opsins are the protein components of the visual pigments of the eye. Color vision has evolved in butterflies through opsin gene duplications, through positive selection at individual opsin loci, and by the use of filtering pigments. By contrast, birds have retained the same opsin complement present in early-jawed vertebrates, and their visual system has diversified primarily through tuning of the short-wavelength-sensitive photoreceptors, rather than by opsin duplication or the use of filtering elements. Butterflies and birds have evolved photoreceptors that might use some of the same amino acid sites for generating similar spectral phenotypes across approximately 540 million years of evolution, when rhabdomeric and ciliary-type opsins radiated during the early Cambrian period. Considering the similarities between the two taxa, it is surprising that the eyes of birds are not more diverse. Additional taxonomic sampling of birds may help clarify this mystery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When I was seven I worked on a science project about caterpillars and moths. I was completely immersed in this project, fascinated by caterpillar body markings, the rhythmical, semi-circular pattern caterpillars adopt to eat leaves, their spiral construction of the chrysalis, and their transformation into moths or butterflies. I demonstrated my fascination, my research and study through carefully executed and detailed drawings. I could read and write well, but I wasn’t as interested in writing and produced a half-page summary to support my visual work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract. 1. Learning may enable insects to obtain nectar from flowers more efficiently. Learning in nectar foraging has been shown primarily in studies of bees and butterflies. Here, learning is demonstrated in the nectar foraging behaviour of a noctuid moth, Helicoverpa armigera. 2. The present studies show that: (1) previous experience with a flowering host species increases the probability of that species being selected for nectar foraging, and (2) previous experience of a particular flower type (food source at bottom or top of the corolla tube) increases the likelihood of the food source being found when that flower type is being searched. 3. The implications of these findings for understanding the pattern of oviposition observed in wild populations of this important pest species are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The silver-headed antechinus (Antechinus argentus) is one of Australia’s most recently described mammals, and the single known population at Kroombit Tops in south-east Queensland is threatened. Nothing is known of the species’ ecology, so during 2014 we collected faecal pellets each month (March–September) from a population at the type locality to gather baseline data on diet composition. A total of 38 faecal pellets were collected from 12 individuals (eight females, four males) and microscopic analysis of pellets identified seven invertebrate orders, with 70% combined mean composition of beetles (Coleoptera: 38%) and cockroaches (Blattodea: 32%). Other orders that featured as prey were ants, crickets/grasshoppers, butterflies/moths, spiders, and true bugs. Given that faecal pellets could only be collected from a single habitat type (Eucalyptus montivaga high-altitude open forest) and location, this is best described as a generalist insectivorous diet that is characteristic of other previously studied congeners.