822 resultados para modular design
em Queensland University of Technology - ePrints Archive
Resumo:
Sequential Design Molecular Weight Range Functional Monomers: Possibilities, Limits, and Challenges Block Copolymers: Combinations, Block Lengths, and Purities Modular Design End-Group Chemistry Ligation Protocols Conclusions
Resumo:
A simple modular strategy for the synthesis of profluorescent nitroxide containing polymers is described. The incorporation of an epoxide as a pendant functionality on a polymer backbone synthesized using ATRP and subsequent nucleophilic ring-opening with sodium azide gave hydroxyl and azide functionality within a 3-bond radius. Orthogonal coupling chemistry then allowed the independent attachment of fluorophore and nitroxide groups in close proximity, giving rise to a profluorescent polymer. Validation of the viability of these materials as fluorescent sensors is demonstrated through efficient fluorescence switch-on observed when the materials are exposed to a model reductant or carbon-centred radical source.
Resumo:
This thesis presents the design process and the prototyping of a lightweight, modular robotic vehicle for the sustainable intensification of broadacre agriculture. Achieved by the joint operation of multiple autonomous vehicles to improve energy consumption, reduce labour, and increase efficiency in the application of inputs for the management of crops. The Small Robotic Farm Vehicle (SRFV) is a lightweight and energy efficient robotic vehicle with a configurable, modular design. It is capable of undertaking a range of agricultural tasks, including fertilising and weed management through mechanical intervention and precision spraying, whilst being more than an order of magnitude lower in weight than existing broadacre agricultural equipment.
Resumo:
Physical infrastructure assets are important components of our society and our economy. They are usually designed to last for many years, are expected to be heavily used during their lifetime, carry considerable load, and are exposed to the natural environment. They are also normally major structures, and therefore present a heavy investment, requiring constant management over their life cycle to ensure that they perform as required by their owners and users. Given a complex and varied infrastructure life cycle, constraints on available resources, and continuing requirements for effectiveness and efficiency, good management of infrastructure is important. While there is often no one best management approach, the choice of options is improved by better identification and analysis of the issues, by the ability to prioritise objectives, and by a scientific approach to the analysis process. The abilities to better understand the effect of inputs in the infrastructure life cycle on results, to minimise uncertainty, and to better evaluate the effect of decisions in a complex environment, are important in allocating scarce resources and making sound decisions. Through the development of an infrastructure management modelling and analysis methodology, this thesis provides a process that assists the infrastructure manager in the analysis, prioritisation and decision making process. This is achieved through the use of practical, relatively simple tools, integrated in a modular flexible framework that aims to provide an understanding of the interactions and issues in the infrastructure management process. The methodology uses a combination of flowcharting and analysis techniques. It first charts the infrastructure management process and its underlying infrastructure life cycle through the time interaction diagram, a graphical flowcharting methodology that is an extension of methodologies for modelling data flows in information systems. This process divides the infrastructure management process over time into self contained modules that are based on a particular set of activities, the information flows between which are defined by the interfaces and relationships between them. The modular approach also permits more detailed analysis, or aggregation, as the case may be. It also forms the basis of ext~nding the infrastructure modelling and analysis process to infrastructure networks, through using individual infrastructure assets and their related projects as the basis of the network analysis process. It is recognised that the infrastructure manager is required to meet, and balance, a number of different objectives, and therefore a number of high level outcome goals for the infrastructure management process have been developed, based on common purpose or measurement scales. These goals form the basis of classifYing the larger set of multiple objectives for analysis purposes. A two stage approach that rationalises then weights objectives, using a paired comparison process, ensures that the objectives required to be met are both kept to the minimum number required and are fairly weighted. Qualitative variables are incorporated into the weighting and scoring process, utility functions being proposed where there is risk, or a trade-off situation applies. Variability is considered important in the infrastructure life cycle, the approach used being based on analytical principles but incorporating randomness in variables where required. The modular design of the process permits alternative processes to be used within particular modules, if this is considered a more appropriate way of analysis, provided boundary conditions and requirements for linkages to other modules, are met. Development and use of the methodology has highlighted a number of infrastructure life cycle issues, including data and information aspects, and consequences of change over the life cycle, as well as variability and the other matters discussed above. It has also highlighted the requirement to use judgment where required, and for organisations that own and manage infrastructure to retain intellectual knowledge regarding that infrastructure. It is considered that the methodology discussed in this thesis, which to the author's knowledge has not been developed elsewhere, may be used for the analysis of alternatives, planning, prioritisation of a number of projects, and identification of the principal issues in the infrastructure life cycle.
Resumo:
This reversible garment, the grow-shrink-and-turncoat, is constructed in modules which allow it to be extended or tightened depending on the wearer. Later, it can be disassembled and then reassembled to form a new garment. The laser-cut holes allow for layers of cloth to be added or removed. The design was developed in part from a brainstorming activity with first and second year QUT students – their ideas included a garment which can be taken apart, a garment to fit many people, and most intriguingly, a garment that can open and ‘grow’ like a flower, swelling up in cold weather to warm the body. Taking these ideas, I developed a garment which can be disassembled, with layers added or subtracted by the wearer according to aesthetics and / or comfort. The shell is constructed from six squares of laser cut cloth, draped together with six smaller laser-cut rectangles, held in place with removable stitching. Additional squares and rectangles of cloth can be added / subtracted with ties knotted through the laser-cut holes. The laser cutting becomes a patterning device as well as integral to the construction of the garment. Conceptually, the garment is grounded in the notion of fabric as a precious resource – the pieces are designed to be disassembled at end-of-life, and then reconfigured into a fresh design.
Resumo:
This paper investigates the critical role of knowledge sharing (KS) in leveraging manufacturing activities, namely integrated supplier management (ISM) and new product development (NPD) to improve business performance (BP) within the context of Taiwanese electronic manufacturing companies. The research adopted a sequential mixed method research design, which provided both quantitative empirical evidence as well as qualitative insights, into the moderating effect of KS on the relationships between these two core manufacturing activities and BP. First, a questionnaire survey was administered, which resulted in a sample of 170 managerial and technical professionals providing their opinions on KS, NPD and ISM activities and the BP level within their respective companies. On the basis of the collected data, factor analysis was used to verify the measurement model, followed by correlation analysis to explore factor interrelationships, and finally moderated regression analyses to extract the moderating effects of KS on the relationships of NPD and ISM with BP. Following the quantitative study, six semi-structured interviews were conducted to provide qualitative in-depth insights into the value added from KS practices to the targeted manufacturing activities and the extent of its leveraging power. Results from quantitative statistical analysis indicated that KS, NPD and ISM all have a significant positive impact on BP. Specifically, IT infrastructure and open communication were identified as the two types of KS practices that could facilitate enriched supplier evaluation and selection, empower active employee involvement in the design process, and provide support for product simplification and the modular design process, thereby improving manufacturing performance and strengthening company competitiveness. The interviews authenticated many of the empirical findings, suggesting that in the contemporary manufacturing context KS has become an integral part of many ISM and NPD activities and when embedded properly can lead to an improvement in BP. The paper also highlights a number of useful implications for manufacturing companies seeking to leverage their BP through innovative and sustained KS practices.
Resumo:
Purpose – Integrated supplier management (ISM), new product development (NPD) and knowledge sharing (KS) practices are three primary business activities utilised to enhance manufacturers' business performance (BP). The purpose of this paper is to empirically investigate the relationships between these three business activities (i.e. ISM, NPD, KS) and BP in a Taiwanese electronics manufacturing context. Design/methodology/approach – A questionnaire survey is first administered to a sample of electronic manufacturing companies operating in Taiwan to elicit the opinions of technical and managerial professionals regarding business activities and BP within their companies. A total of 170 respondents from 83 companies respond to the survey. Factor, correlation and path analysis are undertaken on this quantitative data set to derive the key factors which leverage business outcomes in these companies. Following empirical analysis, six semi-structured interviews are undertaken with manufacturing executives to provide qualitative insights into the underlying reasons why certain business activity factors are the strongest predictors of BP. Findings – The investigation shows that the ISM, NPD and KS constructs all play an important role in the success of company operations and creating business outcomes. Specifically, the key factors within these constructs which influenced BP are: supplier evaluation and selection; design simplification and modular design; information technology infrastructure and systems and open communication. Accordingly, sufficient financial and human resources should be allocated to these important activities to derive accelerated rates of improved BP. These findings are supported by the qualitative interviews with manufacturing executives. Originality/value – The paper depicts the pathways to improved manufacturing BP, through targeting efforts into the above-mentioned factors within the ISM, NPD and KS constructs. Based on the empirical path model, and the specific insights derived from the explanatory interviews with manufacturing executives, the paper also provides a number of practical implications for manufacturing companies seeking to enhance their BP through improved operational activities.
Resumo:
Purpose: Within the context of high global competitiveness, knowledge management (KM) has proven to be one of the major factors contributing to enhanced business outcomes. Furthermore, knowledge sharing (KS) is one of the most critical of all KM activities. From a manufacturing industry perspective, supply chain management (SCM) and product development process (PDP) activities, require a high proportion of company resources such as budget and manpower. Therefore, manufacturing companies are striving to strengthen SCM, PDP and KS activities in order to accelerate rates of manufacturing process improvement, ultimately resulting in higher levels of business performance (BP). A theoretical framework along with a number of hypotheses are proposed and empirically tested through correlation, factor and path analyses. Design/methodology/approach: A questionnaire survey was administered to a sample of electronic manufacturing companies operating in Taiwan to facilitate testing the proposed relationships. More than 170 respondents from 83 organisations responded to the survey. The study identified top management commitment and employee empowerment, supplier evaluation and selection, and design simplification and modular design as the key business activities that are strongly associated with the business performance. Findings: The empirical study supports that key manufacturing business activities (i.e., SCM, PDP, and KS) are positively associated with BP. The findings also evealed that some specific business activities such as SCMF1,PDPF2, and KSF1 have the strongest influencing power on particular business outcomes (i.e., BPF1 and BPF2) within the context of electronic manufacturing companies operating in Taiwan. Practical implications: The finding regarding the relationship between SCM and BP identified the essential role of supplier evaluation and selection in improving business competitiveness and long term performance. The process of forming knowledge in companies, such as creation, storage/retrieval, and transfer do not necessarily lead to enhanced business performance; only through effectively applying knowledge to the right person at the right time does. Originality/value: Based on this finding it is recommended that companies should involve suppliers in partnerships to continuously improve operations and enhance product design efforts, which would ultimately enhance business performance. Business performance depends more on an employee’s ability to turn knowledge into effective action.
Resumo:
The InstaBooth is a portable demountable interactive installation for situated community engagement. Its aim is to give a voice to communities who can share their thoughts and ideas in an unstructured and playful way that combines digital technology with tangible materials. It is constructed from standard CNC-cut plywood stock and plans for its construction are available for others to download and use. Its modular design accommodates a range of bespoke interactive technologies, both analogue and digital, designed to facilitate the engagement process by providing means to present different materials and offer different ways to collect feedback. The appearance and interactions of the booth are designed to appeal to different demographics and foster an interactive discussion about a range of different topics such as change management, policy development, and urban planning.
Resumo:
Available industrial energy meters offer high accuracy and reliability, but are typically expensive and low-bandwidth, making them poorly suited to multi-sensor data acquisition schemes and power quality analysis. An alternative measurement system is proposed in this paper that is highly modular, extensible and compact. To minimise cost, the device makes use of planar coreless PCB transformers to provide galvanic isolation for both power and data. Samples from multiple acquisition devices may be concentrated by a central processor before integration with existing host control systems. This paper focusses on the practical design and implementation of planar coreless PCB transformers to facilitate the module's isolated power, clock and data signal transfer. Calculations necessary to design coreless PCB transformers, and circuits designed for the transformer's practical application in the measurement module are presented. The designed transformer and each application circuit have been experimentally verified, with test data and conclusions made applicable to coreless PCB transformers in general.
Resumo:
Managed execution frameworks, such as the.NET Common Language Runtime or the Java Virtual Machine, provide a rich environment for the creation of application programs. These execution environments are ideally suited for languages that depend on type-safety and the declarative control of feature access. Furthermore, such frameworks typically provide a rich collection of library primitives specialized for almost every domain of application programming. Thus, when a new language is implemented on one of these frameworks it becomes necessary to provide some kind of mapping from the new language to the libraries of the framework. The design of such mappings is challenging since the type-system of the new language may not span the domain exposed in the library application programming interfaces (APIs). The nature of these design considerations was clarified in the implementation of the Gardens Point Component Pascal (gpcp) compiler. In this paper we describe the issues, and the solutions that we settled on in this case. The problems that were solved have a wider applicability than just our example, since they arise whenever any similar language is hosted in such an environment.
Resumo:
This paper examines current teaching practice within the context of the Bachelor of Design (Fashion) programme at AUT University and compares it to the approach adopted in previous years. In recent years, staff on the Bachelor of Design (Fashion) adopted a holistic approach to the assessment of design projects similar to the successful ideas and methods put forward by Stella Lange at the FINZ conference, 2005. Prior to adopting this holistic approach, the teaching culture at AUT University was modular and divorced the development of conceptual design ideas from the technical processes of patternmaking and garment construction, thus limiting the creative potential of integrated project work. Fashion Design is not just about drawing pretty pictures but is rather an entire process that encapsulates conceptual design ideas and technical processes within the context of a target market. Fashion design at AUT being under the umbrella of a wider Bachelor of Design must encourage a more serious view of Fashion and Fashion Design as a whole. In the development of the Bachelor of Design degree at AUT, the university recognised that design education would be best serviced by an inclusive approach. At inception, Core Studio and Core Theory papers formed the first semester of the programme across the discipline areas of Fashion, Spatial Design, Graphic Design and Digital Design. These core papers reinforce the reality that there is a common skill set that transcends all design disciplines with the differentiation between disciplines being determined by the techniques and processes they adopt. Studio based teaching within the scope of a major design project was recognised and introduced some time ago for students in their graduating year, however it was also expected that by year 3 the student had amassed the basic skills required to be able to work in this way. The opinion concerning teaching these basic skills was that they were best serviced by a modular approach. Prior attempts to manage design project delivery leant towards deconstructing the newly formed integrated papers in order to ensure key technical skills were covered in enough depth. So, whilst design projects have played an integral part in the delivery of fashion design over the year levels, the earlier projects were timetabled by discipline and unconvincingly connected. This paper discusses how the holistic approach to assessment must be coupled with an integrated approach to delivery. The methods and processes used are demonstrated and some recently trialled developments are shown to have resulted in achieving the integrated approach in both delivery and assessment.
Resumo:
Background Total hip arthroplasty carried out using cemented modular-neck implants provides the surgeon with greater intra-operative flexibility and allows more controlled stem positioning. Methods In this study, finite element models of a whole femur implanted with either the Exeter or with a new cemented modular-neck total hip arthroplasty (separate, neck and stem components) were developed. The changes in bone and cement mantle stress/strain were assessed for varying amounts of neck offset and version angle for the modular-neck device for two simulated physiological load cases: walking and stair climbing. Since the Exeter is the gold standard for polished cemented total hip arthroplasty stem design, bone and cement mantle stresses/strains in the modular-neck finite element models were compared with finite element results for the Exeter. Findings For the two physiological load cases, stresses and strains in the bone and cement mantle were similar for all modular-neck geometries. These results were comparable to the bone and cement mechanics surrounding the Exeter. These findings suggest that the Exeter and the modular neck device distribute stress to the surrounding bone and cement in a similar manner. Interpretation It is anticipated that the modular-neck device will have a similar short-term clinical performance to that of the Exeter, with the additional advantages of increased modularity.
Resumo:
This paper explores the design of virtual and physical learning spaces developed for students of drama and theatre studies. What can we learn from the traditional drama workshop that will inform the design of drama and theatre spaces created in technology-mediated learning environments? The authors examine four examples of spaces created for online, distance and on-campus students and discuss the relationship between the choice of technology, the learning and teaching methods, and the outcomes for student engagement. Combining insights from two previous action research projects, the discussion focuses on the physical space used for contemporary drama workshops, supplemented by Web 2.0 technologies; a modular online theatre studies course; the blogging space of students creating a group devised play; and the open and immersive world of Second Life, where students explore 3D simulations of historical theatre sites. The authors argue that the drama workshop can be used as inspiration for the design of successful online classrooms. This is achieved by focusing on students’ contributions to the learning as individuals and group members, the aesthetics and mise-en-scene of the learning space, and the role of mobile and networked technologies. Students in this environment increase their capacity to become co-creators of knowledge and to achieve creative outcomes. The drama workshop space in its physical and virtual forms is seen as a model for classrooms in other disciplines, where dynamic, creative and collaborative spaces are required.
Resumo:
For the evaluation, design, and planning of traffic facilities and measures, traffic simulation packages are the de facto tools for consultants, policy makers, and researchers. However, the available commercial simulation packages do not always offer the desired work flow and flexibility for academic research. In many cases, researchers resort to designing and building their own dedicated models, without an intrinsic incentive (or the practical means) to make the results available in the public domain. To make matters worse, a substantial part of these efforts pertains to rebuilding basic functionality and, in many respects, reinventing the wheel. This problem not only affects the research community but adversely affects the entire traffic simulation community and frustrates the development of traffic simulation in general. For this problem to be addressed, this paper describes an open source approach, OpenTraffic, which is being developed as a collaborative effort between the Queensland University of Technology, Australia; the National Institute of Informatics, Tokyo; and the Technical University of Delft, the Netherlands. The OpenTraffic simulation framework enables academies from geographic areas and disciplines within the traffic domain to work together and contribute to a specific topic of interest, ranging from travel choice behavior to car following, and from response to intelligent transportation systems to activity planning. The modular approach enables users of the software to focus on their area of interest, whereas other functional modules can be regarded as black boxes. Specific attention is paid to a standardization of data inputs and outputs for traffic simulations. Such standardization will allow the sharing of data with many existing commercial simulation packages.