432 resultados para modeling tools

em Queensland University of Technology - ePrints Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasingly, studies are reported that examine how conceptual modeling is conducted in practice. Yet, typically the studies to date have examined in isolation how modeling grammars can be, or are, used to develop models of information systems or organizational processes, without considering that such modeling is typically done by means of a modeling tool that extends the modeling functionality offered by a grammar through complementary features. This paper extends the literature by examining how the use of seven different features of modeling tools affects usage beliefs users develop when using modeling grammars for process modeling. We show that five distinct tool features positively affect usefulness, ease of use and satisfaction beliefs of users. We offer a number of interpretations about the findings. We also describe how the results inform decisions of relevance to developers of modeling tools as well as managers in charge for making modeling-related investment decisions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In cross-organizational, distributed environments, Business Process Management requires collaborative technologies to facilitate the process of discovering, modeling, and improving business processes across geographical and organizational boundaries. This paper provides a comprehensive understanding of collaborative business process modeling that is based on a review of literature and a case study of three selected modelling tools. The application of the framework reveals that current process modeling tools consider different perspectives on collaboration, and that the included features are orthogonal. This paper informs practitioners about the state of the art in tool support for collaborative process modelling. It also informs vendors about opportunities to enhance the technology support. For research, our paper paper informs social aspects of BPM technology through its explicit focus on the collaboration of BPM stakeholders in the process of distributed modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building Information Modelling (BIM) is evolving in the Construction Industry as a successor to CAD. CAD is mostly a technical tool that conforms to existing industry practices, however BIM has the capacity to revolutionise industry practice. Rather than producing representations of design intent, BIM produces an exact Virtual Prototype of any building that in an ideal situation is centrally stored and freely exchanged between the project team, facilitating collaboration and allowing experimentation in design. Exposing design students to this technology through their formal studies allows them to engage with cutting edge industry practices and to help shape the industry upon their graduation. Since this technology is relatively new to the construction industry, there are no accepted models for how to “teach” BIM effectively at university level. Developing learning models to enable students to make the most out of their learning with BIM presents significant challenges to those teaching in the field of design. To date there are also no studies of students experiences of using this technology. This research reports on the introduction of Building Information Modeling (BIM) software into a second year Bachelor of Design course. This software has the potential to change industry standards through its ability to revolutionise the work practices of those involved in large scale design projects. Students’ understandings and experiences of using the software in order to complete design projects as part of their assessment are reported here. In depth semi-structured interviews with 6 students revealed that students had views that ranged from novice to sophisticate about the software. They had variations in understanding of how the software could be used to complete course requirements, to assist with the design process and in the workplace. They had engaged in limited exploration of the collaborative potential of the software as a design tool. Their understanding of the significance of BIM for the workplace was also variable. The results indicate that students are beginning to develop an appreciation for how BIM could aid or constrain the work of designers, but that this appreciation is highly varied and likely to be dependent on the students’ previous experiences of working in a design studio environment. Their range of understandings of the significance of the technology is a reflection of their level of development as designers (they are “novice” designers). The results also indicate that there is a need for subjects in later years of the course that allow students to specialise in the area of digital design and to develop more sophisticated views of the role of technology in the design process. There is also a need to capitalise on the collaborative potential inherent in the software in order to realise its capability to streamline some aspects of the design process. As students become more sophisticated designers we should explore their understanding of the role of technology as a design tool in more depth in order to make recommendations for improvements to teaching and learning practice related to BIM and other digital design tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emerging from the challenge to reduce energy consumption in buildings is the need for energy simulation to be used more effectively to support integrated decision making in early design. As a critical response to a Green Star case study, we present DEEPA, a parametric modeling framework that enables architects and engineers to work at the same semantic level to generate shared models for energy simulation. A cloud-based toolkit provides web and data services for parametric design software that automate the process of simulating and tracking design alternatives, by linking building geometry more directly to analysis inputs. Data, semantics, models and simulation results can be shared on the fly. This allows the complex relationships between architecture, building services and energy consumption to be explored in an integrated manner, and decisions to be made collaboratively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Business process modeling as a practice and research field has received great attention in recent years. However, while related artifacts such as models, tools or grammars have substantially matured, comparatively little is known about the activities that are conducted as part of the actual act of process modeling. Especially the key role of the modeling facilitator has not been researched to date. In this paper, we propose a new theory-grounded, conceptual framework describing four facets (the driving engineer, the driving artist, the catalyzing engineer, and the catalyzing artist) that can be used by a facilitator. These facets with behavioral styles have been empirically explored via in-depth interviews and additional questionnaires with experienced process analysts. We develop a proposal for an emerging theory for describing, investigating, and explaining different behaviors associated with Business Process Modeling Facilitation. This theory is an important sensitizing vehicle for examining processes and outcomes from process modeling endeavors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current complication rates for adolescent spinal deformity surgery are unacceptably high and in order to improve patient outcomes, the development of a simulation tool which enables the surgical strategy for an individual patient to be optimized is necessary. In this chapter we will present our work to date in developing and validating patient-specific modeling techniques to simulate and predict patient outcomes for surgery to correct adolescent scoliosis deformity. While these simulation tools are currently being developed to simulate adolescent idiopathic scoliosis patients, they will have broader applications in simulating spinal disorders and optimizing surgical planning for other types of spine surgery. Our studies to date have highlighted the need for not only patient-specific anatomical data, but also patient-specific tissue parameters and biomechanical loading data, in order to accurately predict the physiological behaviour of the spine. Even so, patient-specific computational models are the state-of-the art in computational biomechanics and offer much potential as a pre-operative surgical planning tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of resource management on the building design process directly influences the development cycle time and success of construction projects. This paper presents the information constraint net (ICN) to represent the complex information constraint relations among design activities involved in the building design process. An algorithm is developed to transform the information constraints throughout the ICN into a Petri net model. A resource management model is developed using the ICN to simulate and optimize resource allocation in the design process. An example is provided to justify the proposed model through a simulation analysis of the CPN Tools platform in the detailed structural design. The result demonstrates that the proposed approach can obtain the resource management and optimization needed for shortening the development cycle and optimal allocation of resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During an intensive design-led workshop multidisciplinary design teams examined options for a sustainable multi-residential tower on an inner urban site in Brisbane (Australia). The main aim was to demonstrate the key principles of daylight to every habitable room and cross-ventilation to every apartment in the subtropical climate while responding to acceptable yield and price points. The four conceptual design proposals demonstrated a wide range of outcomes, with buildings ranging from 15 to 30 storeys. Daylight Factor (DF), view to the outside, and the avoidance of direct sunlight were the only quantitative and qualitative performance metrics used to implement daylighting to the proposed buildings during the charrette. This paper further assesses the daylighting performance of the four conceptual designs by utilizing Climate-based daylight modeling (CBDM), specifically Daylight Autonomy (DA) and Useful Daylight Illuminance (UDI). Results show that UDI 100-2000lux calculations provide more useful information on the daylighting design than DF. The percentage of the space with a UDI <100-2000lux larger than 50% ranged from 77% to 86% of the time for active occupant behaviour (occupancy from 6am to 6pm). The paper also highlights the architectural features that mostly affect daylighting design in subtropical climates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A building information model (BIM) provides a rich representation of a building's design. However, there are many challenges in getting construction-specific information from a BIM, limiting the usability of BIM for construction and other downstream processes. This paper describes a novel approach that utilizes ontology-based feature modeling, automatic feature extraction based on ifcXML, and query processing to extract information relevant to construction practitioners from a given BIM. The feature ontology generically represents construction-specific information that is useful for a broad range of construction management functions. The software prototype uses the ontology to transform the designer-focused BIM into a construction-specific feature-based model (FBM). The formal query methods operate on the FBM to further help construction users to quickly extract the necessary information from a BIM. Our tests demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular interactions that underlie pathophysiological states are being elucidated using techniques that profile proteomicend points in cellular systems. Within the field of cancer research, protein interaction networks play pivotal roles in the establishment and maintenance of the hallmarks of malignancy, including cell division, invasion, and migration. Multiple complementary tools enable a multifaceted view of how signal protein pathway alterations contribute to pathophysiological states.One pivotal technique is signal pathway profiling of patient tissue specimens. This microanalysis technology provides a proteomic snapshot at one point in time of cells directly procured from the native context of a tumor micro environment. To study the adaptive patterns of signal pathway events over time, before and after experimental therapy, it is necessary to obtain biopsies from patients before, during, and after therapy. A complementary approach is the profiling of cultured cell lines with and without treatment. Cultured cell models provide the opportunity to study short-term signal changes occurring over minutes to hours. Through this type of system, the effects of particular pharmacological agents may be used to test the effects of signal pathway inhibition or activation on multiple endpoints within a pathway. The complexity of the data generated has necessitated the development of mathematical models for optimal interpretation of interrelated signaling pathways. In combination,clinical proteomic biopsy profiling, tissue culture proteomic profiling, and mathematical modeling synergistically enable a deeper understanding of how protein associations lead to disease states and present new insights into the design of therapeutic regimens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organizational and technological systems analysis and design practices such as process modeling have received much attention in recent years. However, while knowledge about related artifacts such as models, tools, or grammars has substantially matured, little is known about the actual tasks and interaction activities that are conducted as part of analysis and design acts. In particular, key role of the facilitator has not been researched extensively to date. In this paper, we propose a new conceptual framework that can be used to examine facilitation behaviors in process modeling projects. The framework distinguishes four behavioral styles in facilitation (the driving engineer, the driving artist, the catalyzing engineer, and the catalyzing artist) that a facilitator can adopt. To distinguish between the four styles, we provide a set of ten behavioral anchors that underpin facilitation behaviors. We also report on a preliminary empirical exploration of our framework through interviews with experienced analysts in six modeling cases. Our research provides a conceptual foundation for an emerging theory for describing and explaining different behaviors associated with process modeling facilitation, provides first preliminary empirical results about facilitation in modeling projects, and provides a fertile basis for examining facilitation in other conceptual modeling activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Two symposia on “cardiovascular diseases and vulnerable plaques” Cardiovascular disease (CVD) is the leading cause of death worldwide. Huge effort has been made in many disciplines including medical imaging, computational modeling, bio- mechanics, bioengineering, medical devices, animal and clinical studies, population studies as well as genomic, molecular, cellular and organ-level studies seeking improved methods for early detection, diagnosis, prevention and treatment of these diseases [1-14]. However, the mechanisms governing the initiation, progression and the occurrence of final acute clinical CVD events are still poorly understood. A large number of victims of these dis- eases who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs [8,9]. Most cardiovascular diseases are associated with vulnerable plaques. A grand challenge here is to develop new imaging techniques, predictive methods and patient screening tools to identify vulnerable plaques and patients who are more vulnerable to plaque rupture and associated clinical events such as stroke and heart attack, and recommend proper treatment plans to prevent those clinical events from happening. Articles in this special issue came from two symposia held recently focusing on “Cardio-vascular Diseases and Vulnerable Plaques: Data, Modeling, Predictions and Clinical Applications.” One was held at Worcester Polytechnic Institute (WPI), Worcester, MA, USA, July 13-14, 2014, right after the 7th World Congress of Biomechanics. This symposium was endorsed by the World Council of Biomechanics, and partially supported by a grant from NIH-National Institute of Biomedical Image and Bioengineering. The other was held at Southeast University (SEU), Nanjing, China, April 18-20, 2014.