219 resultados para model reference adaptive control systems

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presents a unified and systematic assessment of ten position control strategies for a hydraulic servo system with single-ended cylinder driven by a proportional directional control valve. We aim at identifying those methods that achieve better tracking, have a low sensitivity to system uncertainties, and offer a good balance between development effort and end results. A formal approach for solving this problem relies on several practical metrics, which is introduced herein. Their choice is important, as the comparison results between controllers can vary significantly, depending on the selected criterion. Apart from the quantitative assessment, we also raise aspects which are difficult to quantify, but which must stay in attention when considering the position control problem for this class of hydraulic servo systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several approaches have been introduced in the literature for active noise control (ANC) systems. Since the filtered-x least-mean-square (FxLMS) algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of the FxLMS algorithm, as a first novelty. In many ANC applications, an on-line secondary path modeling method using white noise as a training signal is required to ensure convergence of the system. As a second novelty, this paper proposes a new approach for on-line secondary path modeling on the basis of a new variable-step-size (VSS) LMS algorithm in feed forward ANC systems. The proposed algorithm is designed so that the noise injection is stopped at the optimum point when the modeling accuracy is sufficient. In this approach, a sudden change in the secondary path during operation makes the algorithm reactivate injection of the white noise to re-adjust the secondary path estimate. Comparative simulation results shown in this paper indicate the effectiveness of the proposed approach in reducing both narrow-band and broad-band noise. In addition, the proposed ANC system is robust against sudden changes of the secondary path model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In practical cases for active noise control (ANC), the secondary path has usually a time varying behavior. For these cases, an online secondary path modeling method that uses a white noise as a training signal is required to ensure convergence of the system. The modeling accuracy and the convergence rate are increased when a white noise with a larger variance is used. However, the larger variance increases the residual noise, which decreases performance of the system and additionally causes instability problem to feedback structures. A sudden change in the secondary path leads to divergence of the online secondary path modeling filter. To overcome these problems, this paper proposes a new approach for online secondary path modeling in feedback ANC systems. The proposed algorithm uses the advantages of white noise with larger variance to model the secondary path, but the injection is stopped at the optimum point to increase performance of the algorithm and to prevent the instability effect of the white noise. In this approach, instead of continuous injection of the white noise, a sudden change in secondary path during the operation makes the algorithm to reactivate injection of the white noise to correct the secondary path estimation. In addition, the proposed method models the secondary path without the need of using off-line estimation of the secondary path. Considering the above features increases the convergence rate and modeling accuracy, which results in a high system performance. Computer simulation results shown in this paper indicate effectiveness of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network induced delay in networked control systems (NCS) is inherently non-uniformly distributed and behaves with multifractal nature. However, such network characteristics have not been well considered in NCS analysis and synthesis. Making use of the information of the statistical distribution of NCS network induced delay, a delay distribution based stochastic model is adopted to link Quality-of-Control and network Quality-of-Service for NCS with uncertainties. From this model together with a tighter bounding technology for cross terms, H∞ NCS analysis is carried out with significantly improved stability results. Furthermore, a memoryless H∞ controller is designed to stabilize the NCS and to achieve the prescribed disturbance attenuation level. Numerical examples are given to demonstrate the effectiveness of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces an event-based traffic model for railway systems adopting fixed-block signalling schemes. In this model, the events of trains' arrival at and departure from signalling blocks constitute the states of the traffic flow. A state transition is equivalent to the progress of the trains by one signalling block and it is realised by referring to past and present states, as well as a number of pre-calculated look-up tables of run-times in the signalling block under various signalling conditions. Simulation results are compared with those from a time-based multi-train simulator to study the improvement of processing time and accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linking real-time schedulability directly to the Quality of Control (QoC), the ultimate goal of a control system, a hierarchical feedback QoC management framework with the Fixed Priority (FP) and the Earliest-Deadline-First (EDF) policies as plug-ins is proposed in this paper for real-time control systems with multiple control tasks. It uses a task decomposition model for continuous QoC evaluation even in overload conditions, and then employs heuristic rules to adjust the period of each of the control tasks for QoC improvement. If the total requested workload exceeds the desired value, global adaptation of control periods is triggered for workload maintenance. A sufficient stability condition is derived for a class of control systems with delay and period switching of the heuristic rules. Examples are given to demonstrate the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elastic task model, a significant development in scheduling of real-time control tasks, provides a mechanism for flexible workload management in uncertain environments. It tells how to adjust the control periods to fulfill the workload constraints. However, it is not directly linked to the quality-of-control (QoC) management, the ultimate goal of a control system. As a result, it does not tell how to make the best use of the system resources to maximize the QoC improvement. To fill in this gap, a new feedback scheduling framework, which we refer to as QoC elastic scheduling, is developed in this paper for real-time process control systems. It addresses the QoC directly through embedding both the QoC management and workload adaptation into a constrained optimization problem. The resulting solution for period adjustment is in a closed-form expressed in QoC measurements, enabling closed-loop feedback of the QoC to the task scheduler. Whenever the QoC elastic scheduler is activated, it improves the QoC the most while still meeting the system constraints. Examples are given to demonstrate the effectiveness of the QoC elastic scheduling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Video surveillance systems using Closed Circuit Television (CCTV) cameras, is one of the fastest growing areas in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. This work attempts to address these problems by proposing an automatic suspicious behaviour detection which utilises contextual information. The utilisation of contextual information is done via three main components: a context space model, a data stream clustering algorithm, and an inference algorithm. The utilisation of contextual information is still limited in the domain of suspicious behaviour detection. Furthermore, it is nearly impossible to correctly understand human behaviour without considering the context where it is observed. This work presents experiments using video feeds taken from CAVIAR dataset and a camera mounted on one of the buildings Z-Block) at the Queensland University of Technology, Australia. From these experiments, it is shown that by exploiting contextual information, the proposed system is able to make more accurate detections, especially of those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information gives critical feedback to the system designers to refine the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An online secondary path modelling method using a white noise as a training signal is required in many applications of active noise control (ANC) to ensure convergence of the system. Not continually injection of white noise during system operation makes the system more desirable. The purposes of the proposed method are two folds: controlling white noise by preventing continually injection, and benefiting white noise with a larger variance. The modelling accuracy and the convergence rate increase when a white noise with larger variance is used, however larger the variance increases the residual noise, which decreases performance of the system. This paper proposes a new approach for online secondary path modelling in feedfoward ANC systems. The proposed algorithm uses the advantages of the white noise with larger variance to model the secondary path, but the injection is stopped at the optimum point to increase performance of the system. Comparative simulation results shown in this paper indicate effectiveness of the proposed approach in controlling active noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many applications of active noise control (ANC), an online secondary path modelling method using a white noise as a training signal is required to ensure convergence of the system. The modelling accuracy and the convergence rate increase when a white noise with larger variance is used, however larger the variance increases the residual noise, which decreases performance of the system. The proposed algorithm uses the advantages of the white noise with larger variance to model the secondary path, but the injection is stopped at the optimum point to increase performance of the system. In this approach, instead of continuous injection of the white noise, a sudden change in secondary path during the operation makes the algorithm to reactivate injection of the white noise to adjust the secondary path estimation. Comparative simulation results shown in this paper indicate effectiveness of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Networked control over data networks has received increasing attention in recent years. Among many problems in networked control systems (NCSs) is the need to reduce control latency and jitter and to deal with packet dropouts. This paper introduces our recent progress on a queuing communication architecture for real-time NCS applications, and simple strategies for dealing with packet dropouts. Case studies for a middle-scale process or multiple small-scale processes are presented for TCP/IP based real-time NCSs. Variations of network architecture design are modelled, simulated, and analysed for evaluation of control latency and jitter performance. It is shown that a simple bandwidth upgrade or adding hierarchy does not necessarily bring benefits for performance improvement of control latency and jitter. A co-design of network and control is necessary to maximise the real-time control performance of NCSs