361 resultados para mining areas
em Queensland University of Technology - ePrints Archive
Resumo:
The concept of environmental justice is well developed in North America, but is still at the evolutionary stage in most other jurisdictions around the globe. This paper seeks to explore two jurisdictions where incidents of environmental justice are likely to be seen in the future as a result of manufacturing and mining practices. The discussion will centre upon avenues to environmental justice for both private citizens and the public at large. The first jurisdiction considered is China, where environmental liability claims brought by Chinese citizens have increased at an annual average of 25% (Yang 2011). Manufacturing is at the core of the Chinese economy and is responsible for some of the unprecedented economic growth in the region. Less discussed are the industry impacts on water and air pollution levels and the associated implications of these pollutants on local communities. China introduced the Tort Liability Law (TLL) in 2010, which may provide avenues to justice for private citizens. The other jurisdiction considered by the paper is Australia, where the mining boom has buffered the Australian economy from the global financial crisis. There is some limited case law in Australia where private citizens have made a claim in toxic torts; however the framework is underdeveloped in terms of the significant risks facing indigenous and local communities in mining areas and also by comparison to the developments of the TLL framework in China. This paper traces the regulatory responses to the affects of major industries on communities in China and Australia. From this it examines the need for environmental justice avenues that align with rule of law principles.
Resumo:
Queensland’s Surat Basin has the third largest energy resource in the world — with vast coal seam gas and coal reserves — but farm groups are warning that mining areas, which are prime farm land, risk catastrophic environmental damage to food-producing areas. Mining development is moving very quickly with 36,000 wells due to be sunk in the next few years. A Senate inquiry into the impacts of mining in the Murray-Darling Basin heard evidence from farm and mining industry representatives in Oakey on the Darling Downs yesterday.
Resumo:
The history of the settlement of the province is tied to patterns of exploration and min development. In Northern British Columbia the Cariboo goldfields provided the impetus for settlement of the region and the beginning for mining to extend into the watern and northern regions in a series of minor gold rushes. The northern half of the province has a geological diverse mineral base that supports a wide variety of mining, and a gradual improvement of exploration and mining methods due to scientific knowledge and technology provided opportunities for lode gold and base metal mines to be developed. The success of mining is based on world ore prices and competitive markets that impact the economic viability of developing a mine. Mining faces increasing pressures in the northern half of the province due to other resource values, such as tourism or protected areas, that claim and compete for a similar land base.
Resumo:
With the advent of Service Oriented Architecture, Web Services have gained tremendous popularity. Due to the availability of a large number of Web services, finding an appropriate Web service according to the requirement of the user is a challenge. This warrants the need to establish an effective and reliable process of Web service discovery. A considerable body of research has emerged to develop methods to improve the accuracy of Web service discovery to match the best service. The process of Web service discovery results in suggesting many individual services that partially fulfil the user’s interest. By considering the semantic relationships of words used in describing the services as well as the use of input and output parameters can lead to accurate Web service discovery. Appropriate linking of individual matched services should fully satisfy the requirements which the user is looking for. This research proposes to integrate a semantic model and a data mining technique to enhance the accuracy of Web service discovery. A novel three-phase Web service discovery methodology has been proposed. The first phase performs match-making to find semantically similar Web services for a user query. In order to perform semantic analysis on the content present in the Web service description language document, the support-based latent semantic kernel is constructed using an innovative concept of binning and merging on the large quantity of text documents covering diverse areas of domain of knowledge. The use of a generic latent semantic kernel constructed with a large number of terms helps to find the hidden meaning of the query terms which otherwise could not be found. Sometimes a single Web service is unable to fully satisfy the requirement of the user. In such cases, a composition of multiple inter-related Web services is presented to the user. The task of checking the possibility of linking multiple Web services is done in the second phase. Once the feasibility of linking Web services is checked, the objective is to provide the user with the best composition of Web services. In the link analysis phase, the Web services are modelled as nodes of a graph and an allpair shortest-path algorithm is applied to find the optimum path at the minimum cost for traversal. The third phase which is the system integration, integrates the results from the preceding two phases by using an original fusion algorithm in the fusion engine. Finally, the recommendation engine which is an integral part of the system integration phase makes the final recommendations including individual and composite Web services to the user. In order to evaluate the performance of the proposed method, extensive experimentation has been performed. Results of the proposed support-based semantic kernel method of Web service discovery are compared with the results of the standard keyword-based information-retrieval method and a clustering-based machine-learning method of Web service discovery. The proposed method outperforms both information-retrieval and machine-learning based methods. Experimental results and statistical analysis also show that the best Web services compositions are obtained by considering 10 to 15 Web services that are found in phase-I for linking. Empirical results also ascertain that the fusion engine boosts the accuracy of Web service discovery by combining the inputs from both the semantic analysis (phase-I) and the link analysis (phase-II) in a systematic fashion. Overall, the accuracy of Web service discovery with the proposed method shows a significant improvement over traditional discovery methods.
Resumo:
The building life cycle process is complex and prone to fragmentation as it moves through its various stages. The number of participants, and the diversity, specialisation and isolation both in space and time of their activities, have dramatically increased over time. The data generated within the construction industry has become increasingly overwhelming. Most currently available computer tools for the building industry have offered productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life cycle management. Facility managers and building owners are primarily concerned with highlighting areas of existing or potential maintenance problems in order to be able to improve the building performance, satisfying occupants and minimising turnover especially the operational cost of maintenance. In doing so, they collect large amounts of data that is stored in the building’s maintenance database. The work described in this paper is targeted at adding value to the design and maintenance of buildings by turning maintenance data into information and knowledge. Data mining technology presents an opportunity to increase significantly the rate at which the volumes of data generated through the maintenance process can be turned into useful information. This can be done using classification algorithms to discover patterns and correlations within a large volume of data. This paper presents how and what data mining techniques can be applied on maintenance data of buildings to identify the impediments to better performance of building assets. It demonstrates what sorts of knowledge can be found in maintenance records. The benefits to the construction industry lie in turning passive data in databases into knowledge that can improve the efficiency of the maintenance process and of future designs that incorporate that maintenance knowledge.
Resumo:
Abstract With the phenomenal growth of electronic data and information, there are many demands for the development of efficient and effective systems (tools) to perform the issue of data mining tasks on multidimensional databases. Association rules describe associations between items in the same transactions (intra) or in different transactions (inter). Association mining attempts to find interesting or useful association rules in databases: this is the crucial issue for the application of data mining in the real world. Association mining can be used in many application areas, such as the discovery of associations between customers’ locations and shopping behaviours in market basket analysis. Association mining includes two phases. The first phase, called pattern mining, is the discovery of frequent patterns. The second phase, called rule generation, is the discovery of interesting and useful association rules in the discovered patterns. The first phase, however, often takes a long time to find all frequent patterns; these also include much noise. The second phase is also a time consuming activity that can generate many redundant rules. To improve the quality of association mining in databases, this thesis provides an alternative technique, granule-based association mining, for knowledge discovery in databases, where a granule refers to a predicate that describes common features of a group of transactions. The new technique first transfers transaction databases into basic decision tables, then uses multi-tier structures to integrate pattern mining and rule generation in one phase for both intra and inter transaction association rule mining. To evaluate the proposed new technique, this research defines the concept of meaningless rules by considering the co-relations between data-dimensions for intratransaction-association rule mining. It also uses precision to evaluate the effectiveness of intertransaction association rules. The experimental results show that the proposed technique is promising.
Resumo:
This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.
Resumo:
Australia is currently in the midst of a major resources boom. Resultant growing demands for labour in regional and remote areas have accelerated the recruitment of non resident workers, mostly contractors, who work extended block rosters of 12-hour shifts and are accommodated in work camps, often adjacent to established mining towns. Serious social impacts of these practices, including violence and crime, have generally escaped industry, government and academic scrutiny. This paper highlights some of these impacts on affected regional communities and workers and argues that post-industrial mining regimes serve to mask and privatize these harms and risks, shifting them on to workers, families and communities.
Resumo:
Global demand for minerals and energy products has fuelled Australia’s recent ‘resources boom’ and led to the rapid expansion of mining projects not solely in remote regions but increasingly in long-settled traditionally agriculture-dependent rural areas. Not only has this activity radically changed the economic geography of the nation but a fundamental shift has also occurred to accommodate the acceleration in industry labour demands. In particular, the rush to mine has seen the entrenchment of workforce arrangements largely dependent on fly-in, fly-out (FIFO) and drive–in, drive–out (DIDO) workers. This form of employment has been highly contentious in rural communities at the frontline of resource sector activities. In the context of structural sweeping changes, the selection of study locations informed by a range of indices of violence. Serendipitously we carried out fieldwork in communities undergoing rapid change as a result of expanding resource sector activities. The presence of large numbers of non-resident FIFO and DIDO workers was transforming these frontline communities. This chapter highlights some implications of these changes, drawing upon one particular location, which historically depended on agriculture but has undergone redefinition through mining.
Resumo:
Australia’s mining boom Global demand for minerals and energy products has fuelled Australia’s recent resources boom and has led to the rapid expansion of mining projects not only in remote locations but increasingly in settled traditionally agricultural rural areas. A fundamental shift has also occurred in the provisioning of skilled and semi-skilled workers. The huge acceleration in industry demand for labour has been accompanied by the entrenchment of workforce arrangements largely dependent on fly-in, fly-out (FIFO) and drive–in, drive–out (DIDO) non-resident workers (NRWs). While NRWs are working away from their homes, they are usually accommodated in work camps or ‘villages’ for the duration of their work cycle which are normally comprised of many consecutive days of 12-hour day- and night-shifts. The health effects of this form of employment and the accompanying lifestyle is increasingly becoming contentious. Impacts on personal wellness, wellbeing and quality of life essentially remain under-researched and thus misunderstood. Sodexo in Australia Sodexo began operations in Australia in 1982, and has since become a leader in providing Quality of Life (QOL) services to businesses across the country. The 6,000 Australian employees are part of a global Sodexo team of 413,000 people. Sodexo in Australia designs, delivers and manages on-site their QOL services at 320 diverse site locations, including remote sites. Sodexo operates in a range of sectors, including the mining industry. Service plans are tailored to suit the individual needs of organisations. Sodexo Remote Sites has previously conducted unpublished research among mining workers in Australia. The results highlighted needs and expectations of Australian mining workers. Main insights about workers’ requirements were directed towards: • contacts with closest; • warm rest time around proper and varied meals; • additional services to help them better enjoy their life onsite and/or make the most of it; • organise their transportation; • promote community living; and • finding balance between professional and personal life. The brief for this current research is aimed at building upon this knowledge. Research brief Expectations for quality of life and wellness and wellbeing services are increasing dramatically. It's getting costlier and more difficult to retain valuable employees. This is particularly the case in the Australian mining sector. Given the level of interest in ensuring healthy workplaces in Australia, Sodexo has commissioned QUT to conduct a literature review. The objectives as specified by Sodexo are: Objective 1: To define the concepts of wellness and wellbeing and quality of life in Australia Objective 2: To examine how wellness and wellbeing are developed within organisations in Australia and how they impact on employee and organizational performance. More specifically, to review the literature that could be sourced about: • challenges of the mining environment; • the mining lifestyle – implications for health, wellness and daily life; • personal health and wellness of Australian mining workers; • factors affecting health in mines and perceived support for health and wellness; and • the impact of employer investment in health on perceptions and behaviour of employees. Objective 3: To determine what impact employee wellness and well-being has on the performance of mining workers. More specifically, to review the literature that could be sourced about: • impact of obesity, alcohol, tobacco use on companies; and • links between employee engagement and satisfaction and company productivity. Accordingly this review has attempted to ascertain what factors an organisation should focus on in order to reduce absenteeism and turnover and increase commitment, satisfaction, safety and productivity, with specific reference to the mining industry in Australia. The structure of the report aligns with the stated objectives in that each of the first three parts address an objective. Part IV summarises prominent issues that have arisen and offers some concluding observations and comments.
Resumo:
The practices and public reputation of mining have been changing over time. In the past, mining operations frequently stood accused of being socially and environmentally disruptive, whereas mining today invests heavily in ‘socially responsible’ and ‘sustainable’ business practices. Changes such as these can be witnessed internationally as well as in places like Western Australia (WA), where the mining sector has matured into an economic pillar of the state, and indeed the nation in the context of the recent resources boom. This paper explores the role of mining in WA, presenting a multi-disciplinary perspective on the sector's contribution to sustainable development in the state. The perspectives offered here are drawn from community-based research and the associated academic literature as well as data derived from government sources and the not-for-profit sector. Findings suggest that despite noteworthy attitudinal and operational improvements in the industry, social, economic and environmental problem areas remain. As mining in WA is expected to grow in the years to come, these problem areas require the attention of business and government alike to ensure the long-term sustainability of development as well as people and place.
Resumo:
Objective: To explore fly-in fly-out (FIFO) mining workers' attitudes towards the leisure time they spend in mining camps, the recreational and social aspects of mining camp culture, the camps' communal and recreational infrastructure and activities, and implications for health. Design: In-depth semistructured interviews. Setting: Individual interviews at locations convenient for each participant. Participants: A total of seven participants, one female and six males. The age group varied within 20–59 years. Marital status varied across participants. Main outcome measures: A qualitative approach was used to interview participants, with responses thematically analysed. Findings highlight how the recreational infrastructure and activities at mining camps impact participants' enjoyment of the camps and their feelings of community and social inclusion. Results: Three main areas of need were identified in the interviews, as follows: (i) on-site facilities and activities; (ii) the role of infrastructure in facilitating a sense of community; and (iii) barriers to social interaction. Conclusion: Recreational infrastructure and activities enhance the experience of FIFO workers at mining camps. The availability of quality recreational facilities helps promote social interaction, provides for greater social inclusion and improves the experience of mining camps for their temporary FIFO residents. The infrastructure also needs to allow for privacy and individual recreational activities, which participants identified as important emotional needs. Developing appropriate recreational infrastructure at mining camps would enhance social interactions among FIFO workers, improve their well-being and foster a sense of community. Introducing infrastructure to promote social and recreational activities could also reduce alcohol-related social exclusion.