8 resultados para microvasculature
em Queensland University of Technology - ePrints Archive
Resumo:
INTRODUCTION It is known that the vascular morphology and functionality are changed following closed soft tissue trauma (CSTT) [1], and bone fractures [2]. The disruption of blood vessels may lead to hypoxia and necrosis. Currently, most clinical methods for the diagnosis and monitoring of CSTT with or without bone fractures are primarily based on qualitative measures or practical experience, making the diagnosis subjective and inaccurate. There is evidence that CSTT and early vascular changes following the injury delay the soft tissue tissue and bone healing [3]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma is currently missing. In this research, we aim to establish a diagnostic framework to assess the 3D vascular morphological changes after standardized CSTT in a rat model qualitatively and quantitatively using contrast-enhanced micro-CT imaging. METHODS An impact device was used for the application of a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetized male Wistar rats. After euthanizing the animals at 6 hours, 24 hours, 3 days, 7 days, or 14 days after trauma, CSTT was qualitatively evaluated by macroscopic visual observation of the skin and muscles. For visualization of the vasculature, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. After allowing the contrast agent to polymerize overnight, both hind-limbs were dissected, and then the whole injured and contra-lateral control limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) to evaluate the vascular morphological changes. Correlated biopsy samples were also taken from the CSTT region of both injured and control legs. The morphological parameters such as the vessel volume ratio (VV/TV), vessel diameter (V.D), spacing (V.Sp), number (V.N), connectivity (V.Conn) and the degree of anisotropy (DA) were then quantified by evaluating the scans of biopsy samples using the micro-CT imaging system. RESULTS AND DISCUSSION A qualitative evaluation of the CSTT has shown that the developed impact protocols were capable of producing a defined and reproducible injury within the region of interest (ROI), resulting in a large hematoma and moderate swelling in both lateral and medial sides of the injured legs. Also, the visualization of the vascular network using 3D images confirmed the ability to perfuse the large vessels and a majority of the microvasculature consistently (Figure 1). Quantification of the vascular morphology obtained from correlated biopsy samples has demonstrated that V.D and V.N and V.Sp were significantly higher in the injured legs 24 hours after impact in comparison with the control legs (p<0.05). The evaluation of the other time points is currently progressing. CONCLUSIONS The findings of this research will contribute to a better understanding of the changes to the vascular network architecture following traumatic injuries and during healing process. When interpreted in context of functional changes, such as tissue oxygenation, this will allow for objective diagnosis and monitoring of CSTT and serve as validation for future non-invasive clinical assessment modalities.
Resumo:
INTRODUCTION There is evidence that the reduction of blood perfusion caused by closed soft tissue trauma (CSTT) delays the healing of the affected soft tissues and bone [1]. We hypothesise that the characterisation of vascular morphology changes (VMC) following injury allows us to determine the effect of the injury on tissue perfusion and thereby the severity of the injury. This research therefore aims to assess the VMC following CSTT in a rat model using contrast-enhanced micro-CT imaging. METHODOLOGY A reproducible CSTT was created on the left leg of anaesthetized rats (male, 12 weeks) with an impact device. After euthanizing the animals at 6 and 24 hours following trauma, the vasculature was perfused with a contrast agent (Microfil, Flowtech, USA). Both hind-limbs were dissected and imaged using micro-CT for qualitative comparison of the vascular morphology and quantification of the total vascular volume (VV). In addition, biopsy samples were taken from the CSTT region and scanned to compare morphological parameters of the vasculature between the injured and control limbs. RESULTS AND DISCUSSION While the visual observation of the hindlimb scans showed consistent perfusion of the microvasculature with microfil, enabling the identification of all major blood vessels, no clear differences in the vascular architecture were observed between injured and control limbs. However, overall VV within the region of interest (ROI)was measured to be higher for the injured limbs after 24h. Also, scans of biopsy samples demonstrated that vessel diameter and density were higher in the injured legs 24h after impact. CONCLUSION We believe these results will contribute to the development of objective diagnostic methods for CSTT based on changes to the microvascular morphology as well as aiding in the validation of future non-invasive clinical assessment modalities.
Resumo:
INTRODUCTION Closed soft tissue trauma (CSTT) can be the result of a blunt impact, or a prolonged crush injury and involves damage to the skin, muscles and the neurovascular system. It causes a variety of symptoms such as haematoma and in severe cases may result in hypoxia and necrosis. There is evidence that early vasculature changes following the injury delays the tissue healing [1]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma and the effect of this on CSTT healing is currently missing. Research aims: Developing an experimental rat model to characterise the structural changes to the vasculature after trauma qualitatively and quantitatively using micro CT. MATERIAL AND METHODS An impact device was developed to apply a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetised rats [3]. After euthanizing the animals at 6 hours after trauma, CSTT was qualitatively evaluated by macroscopic observations of the skin and muscles. For vasculature visualisation, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil) using an infusion pump (Figure 4). The overall changes to the vasculature as a result of impact trauma were characterised qualitatively based on the 3D reconstructed images of the vasculature (Figure 5). For a smaller region of interest, the morphological parameters such as vessel thickness (diameter), spacing, and average number per volume were quantified using the scanner’s software. RESULTS AND DISCUSSION Visual observation of CSTT has revealed a haematoma in some animals (Figure 3). Micro CT images indicate good perfusion of the vasculature with contrast agent, allowing the major vessels to be identified (Figure 5). Qualitatively and quantitatively, no differences between injured and non-injured legs were observed at 6 h after trauma. Further time points of 12h, 24h, 3 days and 14 days after trauma will be characterised for identifying temporal changes of the vasculature during healing. Histomorphometical studies are required for validation of the results derived from the micro CT imaging. CONCLUSION AND FUTURE DIRECTION Findings of this research may contribute towards the establishment of a fundamental basis for the quantitative assessment and monitoring of CSTT based on microvasculature changes after trauma, which will ultimately allow for optimising the clinical treatment and improve patient outcomes.
Resumo:
Objectives: Malignant mesothelioma (MM) is a fatal tumor of increasing incidence related to asbestos exposure. Microscopic tumor necrosis (TN) is a poor prognostic factor in solid tumors, but it has not been characterized in MM. We wished to evaluate the incidence of TN in MM and its correlations with clinicopathologic factors, angiogenesis, and survival. Methods: TN was graded in 171 routine formalin-fixed, paraffin-embedded hematoxylin-eosinstained tumor sections by two independent observers. Angiogenesis was assessed by the microvessel count (MVC) of CD34 immunostained sections. TN was correlated with survival by Kaplan-Meier and log-rank analysis, and stepwise, multivariate Cox models were used to compare TN with angiogenesis and established prognostic factors and prognostic scoring systems. Results: TN was identified in 39 cases (22.8%) and correlated with low hemoglobin (p = 0.01), thrombocytosis (p = 0.04), and high MVC (p = 0.02). TN was a poor prognostic factor in univariate analysis (p = 0.008). Patients with TN had a median survival of 5.3 months vs 8.3 months in negative cases. Independent indicators of poor prognosis in multivariate analysis were nonepithelioid cell type (p = 0.0001), performance status > 0 (p = 0.007), and increasing MVC (p = 0.004) but not TN. TN contributed independently to the European Organisation for Research and Treatment of Cancer (EORTC) [p = 0.03] and to the Cancer and Leukemia Group B (CALGB) [p = 0.03] prognostic groups in respective multivariate Cox analyses. Conclusions: TN correlates with angiogenesis and is a poor prognostic factor in MM. TN contributes to the EORTC and CALGB prognostic scoring systems.
Resumo:
Neo-angiogenesis during neoplastic growth involves endothelial mitogenic and migration stimuli produced by cancer or tumour stromal cells. Although this active angiogenesis takes place in the tumour periphery, the process of vessel growth and survival in inner areas and its clinical role remain largely unexplored. The present study compared the microvessel score (MS) as well as the single endothelial cell score (ECS) in the invading edge and in inner areas of non-small cell lung carcinomas (NSCLCs). Three different patterns of vascular growth were distinguished: the edvin (edge vs. inner) type 1, where a low MS was observed in both peripheral and inner tumour areas; the edvin type 2, where a high MS was noted in the invading front but a low MS in inner areas; and the edvin type 3, where both peripheral and inner tumour areas had a high MS. The ECS was high in the invading edge in edvin type 2 and 3 cases and was sharply decreased in both types in inner areas, suggesting that endothelial cell migration is unlikely to contribute to the angiogenic process in areas away from the tumour front. Expression of the vascular endothelial growth factor (VEGF) and of thymidine phosphorylase (TP) was associated with a high MS in the invading edge. VEGF was associated with a high MS in inner areas (edvin 3), while TP expression was associated with edvin type 2, showing that VEGF (and not TP) contributes to the preservation of the inner vasculature. Both edvin type 2 and 3 cases showed an increased incidence of node metastasis, but edvin type 3 cases had a poorer prognosis, even in the N1-stage group. The present study suggests that tumour factors regulating angiogenesis and vascular survival are not identical. A possible method is reported to quantify these two parameters by comparing the MS in the invading edge and inner areas (edvin types). This observation may contribute to the evaluation of the effectiveness of different therapeutic approaches, namely vascular targeting vs. anti-angiogenesis. Copyright (C) 2000 John Wiley and Sons, Ltd.
Resumo:
Microvessel density (MVD) is a widely used surrogate measure of angiogenesis in pathological specimens and tumour models. Measurement of MVD can be achieved by several methods. Automation of counting methods aims to increase the speed, reliability and reproducibility of these techniques. The image analysis system described here enables MVD measurement to be carried out with minimal expense in any reasonably equipped pathology department or laboratory. It is demonstrated that the system translates easily between tumour types which are suitably stained with minimal calibration. The aim of this paper is to offer this technique to a wider field of researchers in angiogenesis.
Resumo:
Significance: Chronic wounds represent a major burden on global healthcare systems and reduce the quality of life of those affected. Significant advances have been made in our understanding of the biochemistry of wound healing progression. However, knowledge regarding the specific molecular processes influencing chronic wound formation and persistence remains limited. Recent Advances: Generally, healing of acute wounds begins with hemostasis and the deposition of a plasma-derived provisional matrix into the wound. The deposition of plasma matrix proteins is known to occur around the microvasculature of the lower limb as a result of venous insufficiency. This appears to alter limb cutaneous tissue physiology and consequently drives the tissue into a ‘preconditioned’ state that negatively influences the response to wounding. Critical Issues: Processes, such as oxygen and nutrient suppression, edema, inflammatory cell trapping/extravasation, diffuse inflammation, and tissue necrosis are thought to contribute to the advent of a chronic wound. Healing of the wound then becomes difficult in the context of an internally injured limb. Thus, interventions and therapies for promoting healing of the limb is a growing area of interest. For venous ulcers, treatment using compression bandaging encourages venous return and improves healing processes within the limb, critically however, once treatment concludes ulcers often reoccur. Future Directions: Improved understanding of the composition and role of pericapillary matrix deposits in facilitating internal limb injury and subsequent development of chronic wounds will be critical for informing and enhancing current best practice therapies and preventative action in the wound care field.