7 resultados para microbic invaders

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent advance in biosecurity surveillance design aims to benefit island conservation through early and improved detection of incursions by non-indigenous species. The novel aspects of the design are that it achieves a specified power of detection in a cost-managed system, while acknowledging heterogeneity of risk in the study area and stratifying the area to target surveillance deployment. The design also utilises a variety of surveillance system components, such as formal scientific surveys, trapping methods, and incidental sightings by non-biologist observers. These advances in design were applied to black rats (Rattus rattus) representing the group of invasive rats including R. norvegicus, and R. exulans, which are potential threats to Barrow Island, Australia, a high value conservation nature reserve where a proposed liquefied natural gas development is a potential source of incursions. Rats are important to consider as they are prevalent invaders worldwide, difficult to detect early when present in low numbers, and able to spread and establish relatively quickly after arrival. The ‘exemplar’ design for the black rat is then applied in a manner that enables the detection of a range of non-indigenous species of rat that could potentially be introduced. Many of the design decisions were based on expert opinion as data gaps exist in empirical data. The surveillance system was able to take into account factors such as collateral effects on native species, the availability of limited resources on an offshore island, financial costs, demands on expertise and other logistical constraints. We demonstrate the flexibility and robustness of the surveillance system and discuss how it could be updated as empirical data are collected to supplement expert opinion and provide a basis for adaptive management. Overall, the surveillance system promotes an efficient use of resources while providing defined power to detect early rat incursions, translating to reduced environmental, resourcing and financial costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex surveillance problems are common in biosecurity, such as prioritizing detection among multiple invasive species, specifying risk over a heterogeneous landscape, combining multiple sources of surveillance data, designing for specified power to detect, resource management, and collateral effects on the environment. Moreover, when designing for multiple target species, inherent biological differences among species result in different ecological models underpinning the individual surveillance systems for each. Species are likely to have different habitat requirements, different introduction mechanisms and locations, require different methods of detection, have different levels of detectability, and vary in rates of movement and spread. Often there is a further challenge of a lack of knowledge, literature, or data, for any number of the above problems. Even so, governments and industry need to proceed with surveillance programs which aim to detect incursions in order to meet environmental, social and political requirements. We present an approach taken to meet these challenges in one comprehensive and statistically powerful surveillance design for non-indigenous terrestrial vertebrates on Barrow Island, a high conservation nature reserve off the Western Australian coast. Here, the possibility of incursions is increased due to construction and expanding industry on the island. The design, which includes mammals, amphibians and reptiles, provides a complete surveillance program for most potential terrestrial vertebrate invaders. Individual surveillance systems were developed for various potential invaders, and then integrated into an overall surveillance system which meets the above challenges using a statistical model and expert elicitation. We discuss the ecological basis for the design, the flexibility of the surveillance scheme, how it meets the above challenges, design limitations, and how it can be updated as data are collected as a basis for adaptive management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Designing practical rules for controlling invasive species is a challenging task for managers, particularly when species are long-lived, have complex life cycles and high dispersal capacities. Previous findings derived from plant matrix population analyses suggest that effective control of long-lived invaders may be achieved by focusing on killing adult plants. However, the cost-effectiveness of managing different life stages has not been evaluated. We illustrate the benefits of integrating matrix population models with decision theory to undertake this evaluation, using empirical data from the largest infestation of mesquite (Leguminosae: Prosopis spp) within Australia. We include in our model the mesquite life cycle, different dispersal rates and control actions that target individuals at different life stages with varying costs, depending on the intensity of control effort. We then use stochastic dynamic programming to derive cost-effective control strategies that minimize the cost of controlling the core infestation locally below a density threshold and the future cost of control arising from infestation of adjacent areas via seed dispersal. Through sensitivity analysis, we show that four robust management rules guide the allocation of resources between mesquite life stages for this infestation: (i) When there is no seed dispersal, no action is required until density of adults exceeds the control threshold and then only control of adults is needed; (ii) when there is seed dispersal, control strategy is dependent on knowledge of the density of adults and large juveniles (LJ) and broad categories of dispersal rates only; (iii) if density of adults is higher than density of LJ, controlling adults is most cost-effective; (iv) alternatively, if density of LJ is equal or higher than density of adults, management efforts should be spread between adults, large and to a lesser extent small juveniles, but never saplings. Synthesis and applications.In this study, we show that simple rules can be found for managing invasive plants with complex life cycles and high dispersal rates when population models are combined with decision theory. In the case of our mesquite population, focussing effort on controlling adults is not always the most cost-effective way to meet our management objective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species' relative abundance will more rapidly advance our understanding of invasions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With its foregrounding of the political issue of the denial of Aboriginal Australian sovereignty by British invaders in its big budget, mainstream narrative, 'The Sapphires' (Wayne Blair 2012) is shown to be another example of a "fourth formation" (Starrs 2012) in Moore and Muecke's 1985 model. Blair's feel-good movie features an all-Aboriginal Australian troupe of singers, The Sapphires, who undertake a journey of self-discovery whereby they learn the importance of choosing the protest songs of black Soul over the white coloniser's "whining" Country and Western songs and this is historically contextualised with a discussion of Aboriginal Australians and popular radio. Furthermore, this paper argues the iconic 'Welcome to Country' is twice subverted to reinforce this theme, firstly in the Cummeragunja pub and secondly in war-torn Vietnam. Finally, the prediction is made that a "fifth formation", in which seeking recognition of Aboriginal Australian sovereignty is no longer the goal because it has become the ongoing reality, will soon be the project of Australian film-makers as they celebrate this long overdue societal shift.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coptotermes Wasmann (Isoptera: Rhinotermitidae) is one of the most economically important subterranean termite genera and some species are successful invaders. However, despite its important pest status, the taxonomic validity of many named Coptotermes species remains unclear. In this study, we reviewed all named species within the genus and investigated evidence supporting the validity of each named species. Species were systematically scrutinized according to the region of their original description: Southeast Asia, India, China, Africa, the Neotropics, and Australia. We estimate that of the currently 69 named species described by accepted nomenclatural rules, only 21 taxa have solid evidence for validity, 44 names have uncertain status, and the remaining species names should be synonymized or were made unavailable. Species with high degrees of invasiveness may be known under additional junior synonyms due to independent parochial descriptions. Molecular data for a vast majority of species are scarce and significant effort is needed to complete the taxonomic and phylogenetic revision of the genus. Because of the wide distribution of Coptotermes, we advocate for an integrative taxonomic effort to establish the distribution of each putative species, provide specimens and corresponding molecular data, check original descriptions and type specimens (if available), and provide evidence for a more robust phylogenetic position of each species. This study embodies both consensus and contention of those studying Coptotermes and thus pinpoints the current uncertainty of many species. This project is intended to be a roadmap for identifying those Coptotermes species names that need to be more thoroughly investigated, as an incentive to complete a necessary revision process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bees are well known for being industrious pollinators. Some species, however, have taken to invading the nests of other colonies to steal food, nest material or the nest site itself. Despite the potential mortality costs due to fighting with an aggressive opponent, the prospects of a large bounty can be worth the risk. In this review, we aim to bring together current knowledge on intercolony fighting with a view to better understand the evolution of warfare in bees and identify avenues for future research. A review of literature reveals that at least 60 species of stingless bees are involved in heterospecific conflicts, either as attacking or victim colonies. The threat of invasion has led to the evolution of architectural, behavioural and morphological adaptations, such as narrow entrance tunnels, mud balls to block the entrance, decoy nests that direct invaders away from the brood chamber, fighting swarms, and soldiers that are skilled at immobilising attackers. Little is known about how victim colonies are selected, but a phylogenetically controlled analysis suggests that the notorious robber bee Lestrimelitta preferentially attacks colonies of species with more concentrated honey. Warfare among bees poses many interesting questions, including why species differ so greatly in their response to attacks and how these alternative strategies of obtaining food or new nest sites have evolved.