3 resultados para mepyramine maleate

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acepromazine (ACP) is a useful therapeutic drug, but is a prohibited substance in competition horses. The illicit use of ACP is difficult to detect due to its rapid metabolism, so this study investigated the ACP metabolite 2-(1-hydroxyethyl)promazine sulphoxide (HEPS) as a potential forensic marker. Acepromazine maleate, equivalent to 30 mg of ACP, was given IV to 12 racing-bred geldings. Blood and urine were collected for 7 days post-administration and analysed for ACP and HEPS by liquid chromatography–mass spectrometry (LC–MS). Acepromazine was quantifiable in plasma for up to 3 h with little reaching the urine unmodified. Similar to previous studies, there was wide variation in the distribution and metabolism of ACP. The metabolite HEPS was quantifiable for up to 24 h in plasma and 144 h in urine. The metabolism of ACP to HEPS was fast and erratic, so the early phase of the HEPS emergence could not be modelled directly, but was assumed to be similar to the rate of disappearance of ACP. However, the relationship between peak plasma HEPS and the y-intercept of the kinetic model was strong (P = 0.001, r2 = 0.72), allowing accurate determination of the formation pharmacokinetics of HEPS. Due to its rapid metabolism, testing of forensic samples for the parent drug is redundant with IV administration. The relatively long half-life of HEPS and its stable behaviour beyond the initial phase make it a valuable indicator of ACP use, and by determining the urine-to-plasma concentration ratios for HEPS, the approximate dose of ACP administration may be estimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several tests have been devised in an attempt to detect behaviour modification due to training, supplements or diet in horses. These tests rely on subjective observations in combination with physiological measures, such as heart rate (HR) and plasma cortisol concentrations, but these measures do not definitively identify behavioural changes. The aim of the present studies was to develop an objective and relevant measure of horse reactivity. In Study 1, HR responses to auditory stimuli, delivered over 6 days, designed to safely startle six geldings confined to individual stalls was studied to determine if peak HR, unconfounded by physical exertion, was a reliable measure of reactivity. Both mean (±SEM) resting HR (39.5 ± 1.9 bpm) and peak HR (82 ± 5.5 bpm) in response to being startled in all horses were found to be consistent over the 6 days. In Study 2, HR, plasma cortisol concentrations and speed of departure from an enclosure (reaction speed (RS)) in response to a single stimulus of six mares were measured when presented daily over 6 days. Peak HR response (133 ± 4 bpm) was consistent over days for all horses, but RS increased (3.02 ± 0.72 m/s on Day 1 increasing to 4.45 ± 0.53 m/s on Day 6; P = 0.005). There was no effect on plasma cortisol, so this variable was not studied further. In Study 3, using the six geldings from Study 1, the RS test was refined and a different startle stimulus was used each day. Again, there was no change in peak HR (97.2 ± 5.8 bpm) or RS (2.9 ± 0.2 m/s on Day 1 versus 3.0 ± 0.7 m/s on Day 6) over time. In the final study, mild sedation using acepromazine maleate (0.04 mg/kg BW i.v.) decreased peak HR in response to a startle stimulus when the horses (n = 8) were confined to a stall (P = 0.006), but not in an outdoor environment when the RS test was performed. However, RS was reduced by the mild sedation (P = 0.02). In conclusion, RS may be used as a practical and objective test to measure both reactivity and changes in reactivity in horses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the relationship between mitochondrial biogenesis, cell signalling and antioxidant enzymes by depleting skeletal muscle glutathione with diethyl maleate (DEM) which resulted in a demonstrable increase in oxidative stress during exercise. Animals were divided into six groups: (1) sedentary control rats; (2) sedentary rats treated with DEM; (3) exercise control rats euthanized immediately after exercise; (4) exercise rats + DEM; (5) exercise control rats euthanized 4 h after exercise, and; (6) exercise rats + DEM euthanized 4 h after exercise. Exercising animals ran on the treadmill at a 10% gradient at 20 m/min for the first 30 min. The speed was then increased every 10 min by 1.6 m/min until exhaustion. There was a reduction in total glutathione in the skeletal muscle of DEM treated animals compared to the control animals (P<0.05). Within the control group, total glutathione was higher in the sedentary group compared to after exercise (P<0.05). DEM treatment also significantly increased oxidative stress, as measured by increased plasma F2-isoprostanes (P<0.05). Exercising animals given DEM showed a significantly greater increase in peroxisome proliferator activated receptor γ coactivator-1α(PGC-1α) mRNA compared to the control animals that were exercised (P<0.05). This study provides novel evidence that by reducing the endogenous antioxidant glutathione in skeletal muscle and inducing oxidative stress through exercise, PGC-1α gene expression was augmented. These findings further highlight the important role of exercise induced oxidative stress in the regulation of mitochondrial biogenesis.