271 resultados para medical informatics
em Queensland University of Technology - ePrints Archive
Resumo:
Technological growth in the 21st century is exponential. Simultaneously, development of the associated risk, uncertainty and user acceptance are scattered. This required appropriate study to establish people accepting controversial technology (PACT). The Internet and services around it, such as World Wide Web, e-mail, instant messaging and social networking are increasingly becoming important in many aspects of our lives. Information related to medical and personal health sharing using the Internet is controversial and demand validity, usability and acceptance. Whilst literature suggest, Internet enhances patients and physicians’ positive interactions some studies establish opposite of such interaction in particular the associated risk. In recent years Internet has attracted considerable attention as a means to improve health and health care delivery. However, it is not clear how widespread the use of Internet for health care really is or what impact it has on health care utilisation. Estimated impact of Internet usage varies widely from the locations locally and globally. As a result, an estimate (or predication) of Internet use and their effects in Medical Informatics related decision-making is impractical. This open up research issues on validating and accepting Internet usage when designing and developing appropriate policy and processes activities for Medical Informatics, Health Informatics and/or e-Health related protocols. Access and/or availability of data on Internet usage for Medical Informatics related activities are unfeasible. This paper presents a trend analysis of the growth of Internet usage in medical informatics related activities. In order to perform the analysis, data was extracted from ERA (Excellence Research in Australia) ranked “A” and “A*” Journal publications and reports from the authenticated public domain. The study is limited to the analyses of Internet usage trends in United States, Italy, France and Japan. Projected trends and their influence to the field of medical informatics is reviewed and discussed. The study clearly indicates a trend of patients becoming active consumers of health information rather than passive recipients.
Resumo:
Objective: To systematically review the published evidence of the impact of health information technology (HIT) on the quality of medical and health care specifically clinicians’ adherence to evidence-based guidelines and the corresponding impact this had on patient clinical outcomes. In order to be as inclusive as possible the research examined literature discussing the use of health information technologies and systems in both medical care such as clinical and surgical, and other health care such as allied health and preventive services.----- Design: Systematic review----- Data Sources: Relevant literature was systematically searched on English language studies indexed in MEDLINE and CINAHL(1998 to 2008), Cochrane Library, PubMed, Database of Abstracts of Review of Effectiveness (DARE), Google scholar and other relevant electronic databases. A search for eligible studies (matching the inclusion criteria) was also performed by searching relevant conference proceedings available through internet and electronic databases, as well as using reference lists identified from cited papers.----- Selection criteria: Studies were included in the review if they examined the impact of Electronic Health Record (EHR), Computerised Provider Order-Entry (CPOE), or Decision Support System (DS); and if the primary outcomes of the studies were focused on the level of compliance with evidence-based guidelines among clinicians. Measures could be either changes in clinical processes resulting from a change of the providers’ behaviour or specific patient outcomes that demonstrated the effectiveness of a particular treatment given by providers. ----- Methods: Studies were reviewed and summarised in tabular and text form. Due to heterogeneity between studies, meta-analysis was not performed.----- Results: Out of 17 studies that assessed the impact of health information technology on health care practitioners’ performance, 14 studies revealed a positive improvement in relation to their compliance with evidence-based guidelines. The primary domain of improvement was evident from preventive care and drug ordering studies. Results from the studies that included an assessment for patient outcomes however, were insufficient to detect either clinically or statistically important improvements as only a small proportion of these studies found benefits. For instance, only 3 studies had shown positive improvement, while 5 studies revealed either no change or adverse outcomes.----- Conclusion: Although the number of included studies was relatively small for reaching a conclusive statement about the effectiveness of health information technologies and systems on clinical care, the results demonstrated consistency with other systematic reviews previously undertaken. Widescale use of HIT has been shown to increase clinician’s adherence to guidelines in this review. Therefore, it presents ongoing opportunities to maximise the uptake of research evidence into practice for health care organisations, policy makers and stakeholders.
Resumo:
This paper outlines a novel approach for modelling semantic relationships within medical documents. Medical terminologies contain a rich source of semantic information critical to a number of techniques in medical informatics, including medical information retrieval. Recent research suggests that corpus-driven approaches are effective at automatically capturing semantic similarities between medical concepts, thus making them an attractive option for accessing semantic information. Most previous corpus-driven methods only considered syntagmatic associations. In this paper, we adapt a recent approach that explicitly models both syntagmatic and paradigmatic associations. We show that the implicit similarity between certain medical concepts can only be modelled using paradigmatic associations. In addition, the inclusion of both types of associations overcomes the sensitivity to the training corpus experienced by previous approaches, making our method both more effective and more robust. This finding may have implications for researchers in the area of medical information retrieval.
Resumo:
Measures of semantic similarity between medical concepts are central to a number of techniques in medical informatics, including query expansion in medical information retrieval. Previous work has mainly considered thesaurus-based path measures of semantic similarity and has not compared different corpus-driven approaches in depth. We evaluate the effectiveness of eight common corpus-driven measures in capturing semantic relatedness and compare these against human judged concept pairs assessed by medical professionals. Our results show that certain corpus-driven measures correlate strongly (approx 0.8) with human judgements. An important finding is that performance was significantly affected by the choice of corpus used in priming the measure, i.e., used as evidence from which corpus-driven similarities are drawn. This paper provides guidelines for the implementation of semantic similarity measures for medical informatics and concludes with implications for medical information retrieval.
Resumo:
Health Informatics is an intersection of information technology, several disciplines of medicine and health care. It sits at the common frontiers of health care services including patient centric, processes driven and procedural centric care. From the information technology perspective it can be viewed as computer application in medical and/or health processes for delivering better health care solutions. In spite of the exaggerated hype, this field is having a major impact in health care solutions, in particular health care deliveries, decision making, medical devices and allied health care industries. It also affords enormous research opportunities for new methodological development. Despite the obvious connections between Medical Informatics, Nursing Informatics and Health Informatics, most of the methodologies and approaches used in Health Informatics have so far originated from health system management, care aspects and medical diagnostic. This paper explores reasoning for domain knowledge analysis that would establish Health Informatics as a domain and recognised as an intellectual discipline in its own right.
Resumo:
Advances in neural network language models have demonstrated that these models can effectively learn representations of words meaning. In this paper, we explore a variation of neural language models that can learn on concepts taken from structured ontologies and extracted from free-text, rather than directly from terms in free-text. This model is employed for the task of measuring semantic similarity between medical concepts, a task that is central to a number of techniques in medical informatics and information retrieval. The model is built with two medical corpora (journal abstracts and patient records) and empirically validated on two ground-truth datasets of human-judged concept pairs assessed by medical professionals. Empirically, our approach correlates closely with expert human assessors ($\approx$ 0.9) and outperforms a number of state-of-the-art benchmarks for medical semantic similarity. The demonstrated superiority of this model for providing an effective semantic similarity measure is promising in that this may translate into effectiveness gains for techniques in medical information retrieval and medical informatics (e.g., query expansion and literature-based discovery).
Resumo:
Objective This paper presents an automatic active learning-based system for the extraction of medical concepts from clinical free-text reports. Specifically, (1) the contribution of active learning in reducing the annotation effort, and (2) the robustness of incremental active learning framework across different selection criteria and datasets is determined. Materials and methods The comparative performance of an active learning framework and a fully supervised approach were investigated to study how active learning reduces the annotation effort while achieving the same effectiveness as a supervised approach. Conditional Random Fields as the supervised method, and least confidence and information density as two selection criteria for active learning framework were used. The effect of incremental learning vs. standard learning on the robustness of the models within the active learning framework with different selection criteria was also investigated. Two clinical datasets were used for evaluation: the i2b2/VA 2010 NLP challenge and the ShARe/CLEF 2013 eHealth Evaluation Lab. Results The annotation effort saved by active learning to achieve the same effectiveness as supervised learning is up to 77%, 57%, and 46% of the total number of sequences, tokens, and concepts, respectively. Compared to the Random sampling baseline, the saving is at least doubled. Discussion Incremental active learning guarantees robustness across all selection criteria and datasets. The reduction of annotation effort is always above random sampling and longest sequence baselines. Conclusion Incremental active learning is a promising approach for building effective and robust medical concept extraction models, while significantly reducing the burden of manual annotation.
Resumo:
Background: Work-related injuries in Australia are estimated to cost around $57.5 billion annually, however there are currently insufficient surveillance data available to support an evidence-based public health response. Emergency departments (ED) in Australia are a potential source of information on work-related injuries though most ED’s do not have an ‘Activity Code’ to identify work-related cases with information about the presenting problem recorded in a short free text field. This study compared methods for interrogating text fields for identifying work-related injuries presenting at emergency departments to inform approaches to surveillance of work-related injury.---------- Methods: Three approaches were used to interrogate an injury description text field to classify cases as work-related: keyword search, index search, and content analytic text mining. Sensitivity and specificity were examined by comparing cases flagged by each approach to cases coded with an Activity code during triage. Methods to improve the sensitivity and/or specificity of each approach were explored by adjusting the classification techniques within each broad approach.---------- Results: The basic keyword search detected 58% of cases (Specificity 0.99), an index search detected 62% of cases (Specificity 0.87), and the content analytic text mining (using adjusted probabilities) approach detected 77% of cases (Specificity 0.95).---------- Conclusions The findings of this study provide strong support for continued development of text searching methods to obtain information from routine emergency department data, to improve the capacity for comprehensive injury surveillance.
Resumo:
The Electrocardiogram (ECG) is an important bio-signal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. The HRV signal can be used as a base signal to observe the heart's functioning. These signals are non-linear and non-stationary in nature. So, higher order spectral (HOS) analysis, which is more suitable for non-linear systems and is robust to noise, was used. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, we have extracted seven features from the heart rate signals using HOS and fed them to a support vector machine (SVM) for classification. Our performance evaluation protocol uses 330 subjects consisting of five different kinds of cardiac disease conditions. We demonstrate a sensitivity of 90% for the classifier with a specificity of 87.93%. Our system is ready to run on larger data sets.
Resumo:
Most social network users hold more than one social network account and utilize them in different ways depending on the digital context. For example, friendly chat on Facebook, professional discussion on LinkedIn, and health information exchange on PatientsLikeMe. Thus many web users need to manage many disparate profiles across many distributed online sources. Maintaining these profiles is cumbersome, time consuming, inefficient, and leads to lost opportunity. In this paper we propose a framework for multiple profile management of online social networks and showcase a demonstrator utilising an open source platform. The result of the research enables a user to create and manage an integrated profile and share/synchronise their profiles with their social networks. A number of use cases were created to capture the functional requirements and describe the interactions between users and the online services. An innovative application of this project is in public health informatics. We utilize the prototype to examine how the framework can benefit patients and physicians. The framework can greatly enhance health information management for patients and more importantly offer a more comprehensive personal health overview of patients to physicians.
Resumo:
Abstract Background The quantum increases in home Internet access and available online health information with limited control over information quality highlight the necessity of exploring decision making processes in accessing and using online information, specifically in relation to children who do not make their health decisions. Objectives To understand the processes explaining parents’ decisions to use online health information for child health care. Methods Parents (N = 391) completed an initial questionnaire assessing the theory of planned behaviour constructs of attitude, subjective norm, and perceived behavioural control, as well as perceived risk, group norm, and additional demographic factors. Two months later, 187 parents completed a follow-up questionnaire assessing their decisions to use online information for their child’s health care, specifically to 1) diagnose and/or treat their child’s suspected medical condition/illness and 2) increase understanding about a diagnosis or treatment recommended by a health professional. Results Hierarchical multiple regression showed that, for both behaviours, attitude, subjective norm, perceived behavioural control, (less) perceived risk, group norm, and (non) medical background were the significant predictors of intention. For parents’ use of online child health information, for both behaviours, intention was the sole significant predictor of behaviour. The findings explain 77% of the variance in parents’ intention to treat/diagnose a child health problem and 74% of the variance in their intentions to increase their understanding about child health concerns. Conclusions Understanding parents’ socio-cognitive processes that guide their use of online information for child health care is important given the increase in Internet usage and the sometimes-questionable quality of health information provided online. Findings highlight parents’ thirst for information; there is an urgent need for health professionals to provide parents with evidence-based child health websites in addition to general population education on how to evaluate the quality of online health information.
Resumo:
Good management, supported by accurate, timely and reliable health information, is vital for increasing the effectiveness of Health Information Systems (HIS). When it comes to managing the under resourced health systems of developing countries, information-based decision making is particularly important. This paper reports findings of a self-report survey that investigated perceptions of local health managers (HMs) of their own regional HIS in Sri Lanka. Data were collected through a validated, pre-tested postal questionnaire, and distributed among a selected group of HMs to elicit their perceptions of the current HIS in relation to information generation, acquisition and use, required reforms to the information system and application of information and communication technology (ICT). Results based on descriptive statistics indicated that the regional HIS was poorly organised and in need of reform; that management support for the system was unsatisfactory in terms of relevance, accuracy, timeliness and accessibility; that political pressure and community and donor requests took precedence over vital health information when management decisions were made; and use of ICT was unsatisfactory. HIS strengths included user-friendly paper formats, a centralised planning system and an efficient disease notification system; weaknesses were lack of comprehensiveness, inaccuracy, and lack of a feedback system. Responses of participants indicated that HIS would be improved by adopting an internationally accepted framework and introducing ICT applications. Perceived barriers to such improvements were high initial cost of educating staff to improve computer literacy, introduction of ICTs, and HIS restructure. We concluded that the regional HIS of Central Province, Sri Lanka had failed to provide much needed information support to HMs. These findings are consistent with similar research in other developing countries and reinforce the need for further research to verify causes of poor performance and to design strategic reforms to improve HIS in regional Sri Lanka.
Resumo:
Information Technology (IT) is successfully applied in a diverse range of fields. Though, the field of Medical Informatics is more than three decades old, it shows a very slow progress compared to many other fields in which the application of IT is growing rapidly. The spending on IT in health care is shooting up but the road to successful use of IT in health care has not been easy. This paper discusses about the barriers to the successful adoption of information technology in clinical environments and outlines the different approaches used by various countries and organisations to tackle the issues successfully. Investing financial and other resources to overcome the barriers for successful adoption of HIT is highly important to realise the dream of a future healthcare system with each customer having secure, private Electronic Health Record (EHR) that is available whenever and wherever needed, enabling the highest degree of coordinated medical care based on the latest medical knowledge and evidence. Arguably, the paper reviews barriers to HIT from organisations’ alignment in respect to the leadership; with their stated values when accepting or willingness to consider the HIT as a determinant factor on their decision-making processes. However, the review concludes that there are many aspects of the organisational accountability and readiness to agree to the technology implementation.
Resumo:
Web-based social networking applications have become increasingly important in recent years. The current applications in the healthcare sphere can support the health management, but to date there is no patient-controlled integrator. This paper proposes a platform called Multiple Profile Manager (MPM) that enables a user to create and manage an integrated profile that can be shared across numerous social network sites. Moreover, it is able to facilitate the collection of personal healthcare data, which makes a contribution to the development of public health informatics. Here we want to illustrate how patients and physicians can be benefited from enabling the platform for online social network sites. The MPM simplifies the management of patients' profiles and allows health professionals to obtain a more complete picture of the patients' background so that they can provide better health care. To do so, we demonstrate a prototype of the platform and describe its protocol specification, which is an XMPP (Extensible Messaging and Presence Protocol) [1] extension, for sharing and synchronising profile data (vCard²) between different social networks.
Resumo:
Objectives The intent of this paper is in the examination of health IT implementation processes – the barriers to and facilitators of successful implementation, identification of a beginning set of implementation best practices, the identification of gaps in the health IT implementation body of knowledge, and recommendations for future study and application. Methods A literature review resulted in the identification of six health IT related implementation best practices which were subsequently debated and clarified by participants attending the NI2012 Research Post Conference held in Montreal in the summer of 2012. Using the framework for implementation research (CFIR) to guide their application, the six best practices were applied to two distinct health IT implementation studies to assess their applicability. Results Assessing the implementation processes from two markedly diverse settings illustrated both the challenges and potentials of using standardized implementation processes. In support of what was discovered in the review of the literature, “one size fits all” in health IT implementation is a fallacy, particularly when global diversity is added into the mix. At the same time, several frameworks show promise for use as “scaffolding” to begin to assess best practices, their distinct dimensions, and their applicability for use. Conclusions Health IT innovations, regardless of the implementation setting, requires a close assessment of many dimensions. While there is no “one size fits all”, there are commonalities and best practices that can be blended, adapted, and utilized to improve the process of implementation. This paper examines health IT implementation processes and identifies a beginning set of implementation best practices, which could begin to address gaps in the health IT implementation body of knowledge.