435 resultados para malware detection
em Queensland University of Technology - ePrints Archive
Resumo:
Many existing schemes for malware detection are signature-based. Although they can effectively detect known malwares, they cannot detect variants of known malwares or new ones. Most network servers do not expect executable code in their in-bound network traffic, such as on-line shopping malls, Picasa, Youtube, Blogger, etc. Therefore, such network applications can be protected from malware infection by monitoring their ports to see if incoming packets contain any executable contents. This paper proposes a content-classification scheme that identifies executable content in incoming packets. The proposed scheme analyzes the packet payload in two steps. It first analyzes the packet payload to see if it contains multimedia-type data (such as . If not, then it classifies the payload either as text-type (such as or executable. Although in our experiments the proposed scheme shows a low rate of false negatives and positives (4.69% and 2.53%, respectively), the presence of inaccuracies still requires further inspection to efficiently detect the occurrence of malware. In this paper, we also propose simple statistical and combinatorial analysis to deal with false positives and negatives.
Resumo:
Smartphones are getting increasingly popular and several malwares appeared targeting these devices. General countermeasures to smartphone malwares are currently limited to signature-based antivirus scanners which efficiently detect known malwares, but they have serious shortcomings with new and unknown malwares creating a window of opportunity for attackers. As smartphones become host for sensitive data and applications, extended malware detection mechanisms are necessary complying with the corresponding resource constraints. The contribution of this paper is twofold. First, we perform static analysis on the executables to extract their function calls in Android environment using the command readelf. Function call lists are compared with malware executables for classifying them with PART, Prism and Nearest Neighbor Algorithms. Second, we present a collaborative malware detection approach to extend these results. Corresponding simulation results are presented.
Resumo:
Static anaylsis represents an approach of checking source code or compiled code of applications before it gets executed. Chess and McGraw state that static anaylsis promises to identify common coding problems automatically. While manual code checking is also a form of static analysis, software tools are used in most cases in order to perform the checks. Chess and McGraw additionaly claim that good static checkers can help to spot and eradicate common security bugs.
Resumo:
Smartphones become very critical part of our lives as they offer advanced capabilities with PC-like functionalities. They are getting widely deployed while not only being used for classical voice-centric communication. New smartphone malwares keep emerging where most of them still target Symbian OS. In the case of Symbian OS, application signing seemed to be an appropriate measure for slowing down malware appearance. Unfortunately, latest examples showed that signing can be bypassed resulting in new malware outbreak. In this paper, we present a novel approach to static malware detection in resource-limited mobile environments. This approach can be used to extend currently used third-party application signing mechanisms for increasing malware detection capabilities. In our work, we extract function calls from binaries in order to apply our clustering mechanism, called centroid. This method is capable of detecting unknown malwares. Our results are promising where the employed mechanism might find application at distribution channels, like online application stores. Additionally, it seems suitable for directly being used on smartphones for (pre-)checking installed applications.
Resumo:
Smartphones started being targets for malware in June 2004 while malware count increased steadily until the introduction of a mandatory application signing mechanism for Symbian OS in 2006. From this point on, only few news could be read on this topic. Even despite of new emerging smartphone platforms, e.g. android and iPhone, malware writers seemed to lose interest in writing malware for smartphones giving users an unappropriate feeling of safety. In this paper, we revisit smartphone malware evolution for completing the appearance list until end of 2008. For contributing to smartphone malware research, we continue this list by adding descriptions on possible techniques for creating the first malware(s) for Android platform. Our approach involves usage of undocumented Android functions enabling us to execute native Linux application even on retail Android devices. This can be exploited to create malicious Linux applications and daemons using various methods to attack a device. In this manner, we also show that it is possible to bypass the Android permission system by using native Linux applications.
Resumo:
Smartphones are steadily gaining popularity, creating new application areas as their capabilities increase in terms of computational power, sensors and communication. Emerging new features of mobile devices give opportunity to new threats. Android is one of the newer operating systems targeting smartphones. While being based on a Linux kernel, Android has unique properties and specific limitations due to its mobile nature. This makes it harder to detect and react upon malware attacks if using conventional techniques. In this paper, we propose an Android Application Sandbox (AASandbox) which is able to perform both static and dynamic analysis on Android programs to automatically detect suspicious applications. Static analysis scans the software for malicious patterns without installing it. Dynamic analysis executes the application in a fully isolated environment, i.e. sandbox, which intervenes and logs low-level interactions with the system for further analysis. Both the sandbox and the detection algorithms can be deployed in the cloud, providing a fast and distributed detection of suspicious software in a mobile software store akin to Google's Android Market. Additionally, AASandbox might be used to improve the efficiency of classical anti-virus applications available for the Android operating system.
Resumo:
We propose CIMD (Collaborative Intrusion and Malware Detection), a scheme for the realization of collaborative intrusion detection approaches. We argue that teams, respectively detection groups with a common purpose for intrusion detection and response, improve the measures against malware. CIMD provides a collaboration model, a decentralized group formation and an anonymous communication scheme. Participating agents can convey intrusion detection related objectives and associated interests for collaboration partners. These interests are based on intrusion objectives and associated interests for collaboration partners. These interests are based on intrusion detection related ontology, incorporating network and hardware configurations and detection capabilities. Anonymous Communication provided by CIMD allows communication beyond suspicion, i.e. the adversary can not perform better than guessing an IDS to be the source of a message at random. The evaluation takes place with the help of NeSSi² (www.nessi2.de), the Network Security Simulator, a dedicated environment for analysis of attacks and countermeasures in mid-scale and large-scale networks. A CIMD prototype is being built based on the JIAC agent framework(www.jiac.de).
Resumo:
Collaborative methods are promising tools for solving complex security tasks. In this context, the authors present the security overlay framework CIMD (Collaborative Intrusion and Malware Detection), enabling participants to state objectives and interests for joint intrusion detection and find groups for the exchange of security-related data such as monitoring or detection results accordingly; to these groups the authors refer as detection groups. First, the authors present and discuss a tree-oriented taxonomy for the representation of nodes within the collaboration model. Second, they introduce and evaluate an algorithm for the formation of detection groups. After conducting a vulnerability analysis of the system, the authors demonstrate the validity of CIMD by examining two different scenarios inspired sociology where the collaboration is advantageous compared to the non-collaborative approach. They evaluate the benefit of CIMD by simulation in a novel packet-level simulation environment called NeSSi (Network Security Simulator) and give a probabilistic analysis for the scenarios.
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways from payment systems to assisting the lives of elderly or disabled people. Security threats for these devices become increasingly dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level. Therefore, third-party developers have the opportunity to develop kernel-based low-level security tools which is not normal for smartphone platforms. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS for example, holding the greatest market share among all smartphone OSs, was closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners� privacy. In this work, we present our current results in analyzing the security of Android smartphones with a focus on its Linux side. Our results are not limited to Android, they are also applicable to Linux-based smartphones such as OpenMoko Neo FreeRunner. Our contribution in this work is three-fold. First, we analyze android framework and the Linux-kernel to check security functionalities. We survey wellaccepted security mechanisms and tools which can increase device security. We provide descriptions on how to adopt these security tools on Android kernel, and provide their overhead analysis in terms of resource usage. As open smartphones are released and may increase their market share similar to Symbian, they may attract attention of malware writers. Therefore, our second contribution focuses on malware detection techniques at the kernel level. We test applicability of existing signature and intrusion detection methods in Android environment. We focus on monitoring events on the kernel; that is, identifying critical kernel, log file, file system and network activity events, and devising efficient mechanisms to monitor them in a resource limited environment. Our third contribution involves initial results of our malware detection mechanism basing on static function call analysis. We identified approximately 105 Executable and Linking Format (ELF) executables installed to the Linux side of Android. We perform a statistical analysis on the function calls used by these applications. The results of the analysis can be compared to newly installed applications for detecting significant differences. Additionally, certain function calls indicate malicious activity. Therefore, we present a simple decision tree for deciding the suspiciousness of the corresponding application. Our results present a first step towards detecting malicious applications on Android-based devices.
Resumo:
Threats against computer networks evolve very fast and require more and more complex measures. We argue that teams respectively groups with a common purpose for intrusion detection and prevention improve the measures against rapid propagating attacks similar to the concept of teams solving complex tasks known from field of work sociology. Collaboration in this sense is not easy task especially for heterarchical environments. We propose CIMD (collaborative intrusion and malware detection) as a security overlay framework to enable cooperative intrusion detection approaches. Objectives and associated interests are used to create detection groups for exchange of security-related data. In this work, we contribute a tree-oriented data model for device representation in the scope of security. We introduce an algorithm for the formation of detection groups, show realization strategies for the system and conduct vulnerability analysis. We evaluate the benefit of CIMD by simulation and probabilistic analysis.
Resumo:
This thesis is a study of how the contents of volatile memory on the Windows operating system can be better understood and utilised for the purposes of digital forensic investigations. It proposes several techniques to improve the analysis of memory, with a focus on improving the detection of unknown code such as malware. These contributions allow the creation of a more complete reconstruction of the state of a computer at acquisition time, including whether or not the computer has been infected by malicious code.
Resumo:
Securing IT infrastructures of our modern lives is a challenging task because of their increasing complexity, scale and agile nature. Monolithic approaches such as using stand-alone firewalls and IDS devices for protecting the perimeter cannot cope with complex malwares and multistep attacks. Collaborative security emerges as a promising approach. But, research results in collaborative security are not mature, yet, and they require continuous evaluation and testing. In this work, we present CIDE, a Collaborative Intrusion Detection Extension for the network security simulation platform ( NeSSi 2 ). Built-in functionalities include dynamic group formation based on node preferences, group-internal communication, group management and an approach for handling the infection process for malware-based attacks. The CIDE simulation environment provides functionalities for easy implementation of collaborating nodes in large-scale setups. We evaluate the group communication mechanism on the one hand and provide a case study and evaluate our collaborative security evaluation platform in a signature exchange scenario on the other.
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways, e.g. for payment systems or assisting the lives of elderly or disabled people. Security threats for these devices become more and more dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level and where third-party developers first time have the opportunity to develop kernel-based low-level security tools. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS, holding the greatest market share among all smartphone OSs, was even closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners privacy. Since signature-based approaches mainly detect known malwares, anomaly-based approaches can be a valuable addition to these systems. They base on mathematical algorithms processing data that describe the state of a certain device. For gaining this data, a monitoring client is needed that has to extract usable information (features) from the monitored system. Our approach follows a dual system for analyzing these features. On the one hand, functionality for on-device light-weight detection is provided. But since most algorithms are resource exhaustive, remote feature analysis is provided on the other hand. Having this dual system enables event-based detection that can react to the current detection need. In our ongoing research we aim to investigates the feasibility of light-weight on-device detection for certain occasions. On other occasions, whenever significant changes are detected on the device, the system can trigger remote detection with heavy-weight algorithms for better detection results. In the absence of the server respectively as a supplementary approach, we also consider a collaborative scenario. Here, mobile devices sharing a common objective are enabled by a collaboration module to share information, such as intrusion detection data and results. This is based on an ad-hoc network mode that can be provided by a WiFi or Bluetooth adapter nearly every smartphone possesses.