134 resultados para mRNA degradation

em Queensland University of Technology - ePrints Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

IRE1 couples endoplasmic reticulum unfolded protein load to RNA cleavage events that culminate in the sequence-specific splicing of the Xbp1 mRNA and in the regulated degradation of diverse membrane-bound mRNAs. We report on the identification of a small molecule inhibitor that attains its selectivity by forming an unusually stable Schiff base with lysine 907 in the IRE1 endonuclease domain, explained by solvent inaccessibility of the imine bond in the enzyme-inhibitor complex. The inhibitor (abbreviated 4μ8C) blocks substrate access to the active site of IRE1 and selectively inactivates both Xbp1 splicing and IRE1-mediated mRNA degradation. Surprisingly, inhibition of IRE1 endonuclease activity does not sensitize cells to the consequences of acute endoplasmic reticulum stress, but rather interferes with the expansion of secretory capacity. Thus, the chemical reactivity and sterics of a unique residue in the endonuclease active site of IRE1 can be exploited by selective inhibitors to interfere with protein secretion in pathological settings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In plants, silencing of mRNA can be transmitted from cell to cell and also over longer distances from roots to shoots. To investigate the long-distance mechanism, WT and mutant shoots were grafted onto roots silenced for an mRNA. We show that three genes involved in a chromatin silencing pathway, NRPD1a encoding RNA polymerase IVa, RNA-dependent RNA polymerase 2 (RDR2), and DICER-like 3 (DCL3), are required for reception of long-distance mRNA silencing in the shoot. A mutant representing a fourth gene in the pathway, argonaute4 (ago4), was also partially compromised in the reception of silencing. This pathway produces 24-nt siRNAs and resulted in decapped RNA, a known substrate for amplification of dsRNA by RDR6. Activation of silencing in grafted shoots depended on RDR6, but no 24-nt siRNAs were detected in mutant rdr6 shoots, indicating that RDR6 also plays a role in initial signal perception. After amplification of decapped transcripts, DCL4 and DCL2 act hierarchically as they do in antiviral resistance to produce 21- and 22-nt siRNAs, respectively, and these guide mRNA degradation. Several dcl genotypes were also tested for their capacity to transmit the mobile silencing signal from the rootstock. dcl1-8 and a dcl2 dcl3 dcl4 triple mutant are compromised in micro-RNA and siRNA biogenesis, respectively, but were unaffected in signal transmission. © 2007 by The National Academy of Sciences of the USA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RNA polymerase III (Pol III) as well as Pol II (35S) promoters are able to drive hairpin RNA (hpRNA) expression and induce target gene silencing in plants. siRNAs of 21 nt are the predominant species in a 35S Pol II line, whereas 24- and/or 22-nucleotide (nt) siRNAs are produced by a Pol III line. The 35S line accumulated the loop of the hpRNA, in contrast to full-length hpRNA in the Pol III line. These suggest that Pol II and Pol III-transcribed hpRNAs are processed by different pathways. One Pol III transgene produced only 24-nt siRNAs but silenced the target gene efficiently, indicating that the 24-nt siRNAs can direct mRNA degradation; specific cleavage was confirmed by 59 rapid amplification of cDNA ends (RACE). Both Pol II- and Pol III-directed hpRNA transgenes induced cytosine methylation in the target DNA. The extent of methylation is not correlated with the level of 21-nt siRNAs, suggesting that they are not effective inducers of DNA methylation. The promoter of a U6 transgene was significantly methylated, whereas the promoter of the endogenous U6 gene was almost free of cytosine methylation, suggesting that endogenous sequences are more resistant to de novo DNA methylation than are transgene constructs. Published by Cold Spring Harbor Laboratory Press. Copyright © 2008 RNA Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the major challenges in the treatment of lung cancer is the development of drug resistance. This represents a major obstacle in the treatment of patients, limiting the efficacy of both conventional chemotherapy and biological therapies. Deciphering the mechanisms of resistance is critical to further understanding the multifactorial pathways involved, and in developing more specific targeted treatments. To date, numerous studies have reported the potential role of microRNAs (miRNAs) in resistance to various cancer treatments. MicroRNAs are a family of small non-coding RNAs that regulate gene expression by sequence-specific targeting of mRNAs causing translational repression or mRNA degradation. More than 1200 validated human miRNAs have been identified to date. While as little as one miRNA can regulate hundreds of targets, a single target can also be affected by multiple miRNAs. Evidence suggests that dysregulation of specific miRNAs may be involved in the acquisition of resistance to a number of cancer treatments, thereby modulating the sensitivity of cancer cells to such therapies. Therefore, targeting miRNAs may be an attractive strategy for developing novel and more effective individualized therapies, improving drug efficiency, and for predicting patient response to different treatments. In this review, we provide an overview on the role of miRNAs in resistance to current lung cancer therapies and novel biological agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pathological mineralization of articular cartilage is a characteristic feature of osteoarthritis (OA); however, the underlying mechanisms, and their relevance to cartilage degeneration, are not clear. The involvement of subchondral bone changes in OA have been reported previously with the characterization of abnormal subchondral bone mineral density (BMD), osteiod volume, altered bone mechanical parameters and an increase in bone turnover markers. A number of osteoarthritic animal models have demonstrated that subchondral bone changes often precede cartilage degeneration. In this study site specific localization of mineralization markers were detected in the OA cartilage. Chondrocytes and osteoblasts derived from OA cartilage and subchondral bone showed a significant increase in the mRNA expressions of mineralization markers. Interestingly, osteoblasts from OA subchondral bone could significantly decrease cartilage matrix expression; whereas, increase mineralization of chondrocytes (Figure 1). Osteogenic factors, such as CBFA1, ALP, and type X collagen (Col-X), were detected in chondrocytes under mineralization conditions (Figure 2). Furthermore, chondrocyte mineralization was followed by increased mRNA and protein levels of MMP-2, MMP-9 and MMP-13, all of which are detrimental to cartilage integrity in vivo. The data reported here suggests that the upregulation of subchondral bone-mineralization, typical of OA progression, causes cartilage mineralization, and that the mineralization of chondrocytes induce increased MMP levels with a subsequent degradation of the articular cartilage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of transgenes in plant genomes can be inhibited by either transcriptional gene silencing or posttranscriptional gene silencing (PTGS). Overexpression of the chalcone synthase-A (CHS-A) transgene triggers PTGS of CHS-A and thus results in loss of flower pigmentation in petunia. We previously demonstrated that epigenetic inactivation of CHS-A transgene transcription leads to a reversion of the PTGS phenotype. Although neomycin phosphotransferase II (nptII), a marker gene co-introduced into the genome with the CHS-A transgene, is not normally silenced in petunia, even when CHS-A is silenced, here we found that nptII was silenced in a petunia line in which CHS-A PTGS was induced, but not in the revertant plants that had no PTGS of CHS-A. Transcriptional activity, accumulation of short interfering RNAs, and restoration of mRNA level after infection with viruses that had suppressor proteins of gene silencing indicated that the mechanism for nptII silencing was posttranscriptional. Read-through transcripts of the CHS-A gene toward the nptII gene were detected. Deep-sequencing analysis revealed a striking difference between the predominant size class of small RNAs produced from the read-through transcripts (22 nt) and that from the CHS-A RNAs (21 nt). These results implicate the involvement of read-through transcription and distinct phases of RNA degradation in the coincident PTGS of linked transgenes and provide new insights into the destabilization of transgene expression.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD project has expanded the knowledge in the area of profluorescent nitroxides with regard to the synthesis and characterisations of novel profluorescent nitroxide probes as well as physical characterisation of the probe molecules in various polymer/physical environments. The synthesis of the first example of an azaphenalene-based fused aromatic nitroxide TMAO, [1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl, was described. This novel nitroxide possesses some of the structural rigidity of the isoindoline class of nitroxides, as well as some properties akin to TEMPO nitroxides. Additionally, the integral aromatic ring imparts fluorescence that is switched on by radical scavenging reactions of the nitroxide, which makes it a sensitive probe for polymer degradation. In addition to the parent TMAO, 5 other azaphenalene derivatives were successfully synthesised. This new class of nitroxide was expected to have interesting redox properties when the structure was investigated by high-level ab initio molecular orbitals theory. This was expected to have implications with biological relevance as the calculated redox potentials for the azaphenalene ring class would make them potent antioxidant compounds. The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrroline, piperidine, isoindoline and azaphenalene) were determined by cyclic voltammetry in acetonitrile. It was shown that potentials related to the one electron processes of the nitroxide were influenced by the type of ring system, ring substituents or groups surrounding the moiety. Favourable comparisons were found between theoretical and experimental potentials for pyrroline, piperidine and isoindoline ring classes. Substitution of these ring classes, were correctly calculated to have a small yet predictable effect on the potentials. The redox potentials of the azaphenalene ring class were underestimated by the calculations in all cases by at least a factor of two. This is believed to be due to another process influencing the redox potentials of the azaphenalene ring class which is not taken into account by the theoretical model. It was also possible to demonstrate the use of both azaphenalene and isoindoline nitroxides as additives for monitoring radical mediated damage that occurs in polypropylene as well as in more commercially relevant polyester resins. Polymer sample doped with nitroxide were exposed to both thermo-and photo-oxidative conditions with all nitroxides showing a protective effect. It was found that isoindoline nitroxides were able to indicate radical formation in polypropylene aged at elevated temperatures via fluorescence build-up. The azaphenalene nitroxide TMAO showed no such build-up of fluorescence. This was believed to be due to the more labile bond between the nitroxide and macromolecule and the protection may occur through a classical Denisov cycle, as is expected for commercially available HAS units. Finally, A new profluorescent dinitroxide, BTMIOA (9,10-bis(1,1,3,3- tetramethylisoindolin-2-yloxyl-5-yl)anthracene), was synthesised and shown to be a powerful probe for detecting changes during the initial stages of thermo-oxidative degradation of polypropylene. This probe, which contains a 9,10-diphenylanthracene core linked to two nitroxides, possesses strongly suppressed fluorescence due to quenching by the two nitroxide groups. This molecule also showed the greatest protective effect on thermo-oxidativly aged polypropylene. Most importantly, BTMIOA was found to be a valuable tool for imaging and mapping free-radical generation in polypropylene using fluorescence microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of polycaprolactone (PCL) as a biomaterial, especially in the fields of drug delivery and tissue engineering, has enjoyed significant growth. Understanding how such a device or scaffold eventually degrades in vivo is paramount as the defect site regenerates and remodels. Degradation studies of three-dimensional PCL and PCL-based composite scaffolds were conducted in vitro (in phosphate buffered saline) and in vivo (rabbit model). Results up to 6 months are reported. All samples recorded virtually no molecular weight changes after 6 months, with a maximum mass loss of only about 7% from the PCL-composite scaffolds degraded in vivo, and a minimum of 1% from PCL scaffolds. Overall, crystallinity increased slightly because of the effects of polymer recrystallization. This was also a contributory factor for the observed stiffness increment in some of the samples, while only the PCL-composite scaffold registered a decrease. Histological examination of the in vivo samples revealed good biocompatibility, with no adverse host tissue reactions up to 6 months. Preliminary results of medical-grade PCL scaffolds, which were implanted for 2 years in a critical-sized rabbit calvarial defect site, are also reported here and support our scaffold design goal for gradual and late molecular weight decreases combined with excellent long-term biocompatibility and bone regeneration. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 90A: 906-919, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report documents work carried out in order to develop and prove a model for predicting the lifetime of painted metal components, with a particular emphasis on Colorbond® due to its prominent use throughout Australia. This work continues on from previous developments reported in 2002-059-B No. 12 [1]. Extensions of work included the following research: (1) Experimental proving of the leaching of chromate inhibitors from Colorbond® materials. (2) Updated models for the accumulation of salts and the time of wetness for gutters, based upon field observations. (3) Electrochemical Impedance Spectroscopy investigations aimed at correlating the corrosion rates of weathered Colorbond® with those predicted by modeling.