203 resultados para load shedding

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The requirement for improved efficiency whilst maintaining system security necessitates the development of improved system analysis approaches and the development of advanced emergency control technologies. Load shedding is a type of emergency control that is designed to ensure system stability by curtailing system load to match generation supply. This paper presents a new adaptive load shedding scheme that provides emergency protection against excess frequency decline, whilst minimizing the risk of line overloading. The proposed load shedding scheme uses the local frequency rate information to adapt the load shedding behaviour to suit the size and location of the experienced disturbance. The proposed scheme is tested in simulation on a 3-region, 10-generator sample system and shows good performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power systems in many countries are stressed towards their stability limit. If these stable systems experience any unexpected serious contingencies, or disturbances, there is a significant risk of instability, which may lead to wide-spread blackout. Frequency is a reliable indicator for such instability condition exists on the power system; therefore under-frequency load shedding technique is used to stable the power system by curtail some load. In this paper, the SFR-UFLS model redeveloped to generate optimal load shedding method is that optimally shed load following one single particular contingency event. The proposed optimal load shedding scheme is then tested on the 39-bus New England test system to show the performance against random load shedding scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The well-established under-frequency load shedding (UFLS) is deemed to be the last of effective remedial measures against a severe frequency decline of a power system. With the ever-increasing size of power systems and the extensive penetration of distributed generators (DGs) in power systems, the problem of developing an optimal UFLS strategy is facing some new challenges. Given this background, an optimal UFLS strategy for a distribution system with DGs and load static characteristics taken into consideration is developed. Based on the frequency and the rate of change of frequency, the presented strategy consists of several basic rounds and a special round. In the basic round, the frequency emergency can be alleviated by quickly shedding some loads. In the special round, the frequency security can be maintained, and the operating parameters of the distribution system can be optimized by adjusting the output powers of DGs and some loads. The modified IEEE 37-node test feeder is employed to demonstrate the essential features of the developed optimal UFLS strategy in the MATLAB/SIMULINK environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With new developments in battery technologies, increasing application of Battery Energy Storage System (BESS) in power system is anticipated in near future. BESS has already been used for primary frequency regulation in the past. This paper examines the feasibility of using BESS with load shedding, in application for large disturbances in power system. Load shedding is one of the conventional ways during large disturbances, and the performance of frequency control will increase in combination with BESS application. According to the latest news, BESS which are applied in high power side will be employed in practice in next 5 year. A simple low order SMR model is used as a test system, while an incremental model of BESS is applied in this paper. As continuous disturbances are not the main concern in this paper, df/dt is not considered in article.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity generation is vital in developed countries to power the many mechanical and electrical devices that people require. Unfortunately electricity generation is costly. Though electricity can be generated it cannot be stored efficiently. Electricity generation is also difficult to manage because exact demand is unknown from one instant to the next. A number of services are required to manage fluctuations in electricity demand, and to protect the system when frequency falls too low. A current approach is called automatic under frequency load shedding (AUFLS). This article proposes new methods for optimising AUFLS in New Zealand’s power system. The core ideas were developed during the 2015 Maths and Industry Study Group (MISG) in Brisbane, Australia. The problem has been motivated by Transpower Limited, a company that manages New Zealand’s power system and transports bulk electricity from where it is generated to where it is needed. The approaches developed in this article can be used in electrical power systems anywhere in the world.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Decentralized and regional load-frequency control of power systems operating in normal and near-normal conditions has been well studied; and several analysis/synthesis approaches have been developed during the last few decades. However in contingency and off-normal conditions, the existing emergency control plans, such as under-frequency load shedding, are usually applied in a centralized structure using a different analysis model. This paper discusses the feasibility of using frequency-based emergency control schemes based on tie-line measurements and local information available within a control area. The conventional load-frequency control model is generalized by considering the dynamics of emergency control/protection schemes and an analytic approach to analyze the regional frequency response under normal and emergency conditions is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes protection and control of a microgrid with converter interfaced micro sources. The proposed protection and control scheme consider both grid connected and autonomous operation of the microgrid. A protection scheme, capable of detecting faults effectively in both grid connected and islanded operations is proposed. The main challenge of the protection, due to current limiting state of the converters is overcome by using admittance relays. The relays operate according to the inverse time characteristic based on measured admittance of the line. The proposed scheme isolates the fault from both sides, while downstream side of the microgrid operates in islanding condition. Moreover faults can be detected in autonomous operation. In grid connected mode distributed generators (DG) supply the rated power while in absence of the grid, DGs share the entire power requirement proportional to rating based on output voltage angle droop control. The protection scheme ensures minimum load shedding with isolating the faulted network and DG control provides a smooth islanding and resynchronization operation. The efficacy of coordinated control and protection scheme has been validated through simulation for various operating conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the optimal allocation and sizing of distributed generators (DGs) in a distribution system is studied. To achieve this goal, an optimization problem should be solved in which the main objective is to minimize the DGs cost and to maximise the reliability simultaneously. The active power balance between loads and DGs during the isolation time is used as a constraint. Another point considered in this process is the load shedding. It means that if the summation of DGs active power in a zone, isolated by the sectionalizers because of a fault, is less than the total active power of loads located in that zone, the program start shedding the loads in one-by-one using the priority rule still the active power balance is satisfied. This assumption decreases the reliability index, SAIDI, compared with the case loads in a zone are shed when total DGs power is less than the total load power. To validate the proposed method, a 17-bus distribution system is employed and the results are analysed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper shows how multiple interconnected microgrids can operate in autonomous mode in a self–healing medium voltage network. This is possible if based on network self– healing capability, the neighbour microgrids are interconnected and a surplus generation capacity is available in some of the Distributed Energy Resources (DERs) of the interconnected microgrids. This will reduce or prevent load shedding within the microgrids with less generation capacity. Therefore, DERs in a microgrid are controlled such that they share the local load within that microgrid as well as the loads in other interconnected microgrids. Different control algorithms are proposed to manage the DERs at different operating conditions. On the other hand, a Distribution Static Compensator (DSTATCOM) is employed to regulate the voltage. The efficacy of the proposed power control, sharing and management among DERs in multiple interconnected microgrids is validated through extensive simulation studies using PSCAD/EMTDC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To minimise the number of load sheddings in a microgrid (MG) during autonomous operation, islanded neighbour MGs can be interconnected if they are on a self-healing network and an extra generation capacity is available in the distributed energy resources (DER) of one of the MGs. In this way, the total load in the system of interconnected MGs can be shared by all the DERs within those MGs. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and MG levels. In this study, first, a hierarchical control structure is discussed for interconnecting the neighbour autonomous MGs where the introduced primary control level is the main focus of this study. Through the developed primary control level, this study demonstrates how the parallel DERs in the system of multiple interconnected autonomous MGs can properly share the load of the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralised power sharing algorithm based on droop control. DER converters are controlled based on a per-phase technique instead of a conventional direct-quadratic transformation technique. In addition, linear quadratic regulator-based state feedback controllers, which are more stable than conventional proportional integrator controllers, are utilised to prevent instability and weak dynamic performances of the DERs when autonomous MGs are interconnected. The efficacy of the primary control level of the DERs in the system of multiple interconnected autonomous MGs is validated through the PSCAD/EMTDC simulations considering detailed dynamic models of DERs and converters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to minimize the number of load shedding in a Microgrid during autonomous operation, islanded neighbour microgrids can be interconnected if they are on a self-healing network and an extra generation capacity is available in Distributed Energy Resources (DER) in one of the microgrids. In this way, the total load in the system of interconnected microgrids can be shared by all the DERs within these microgrids. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and microgrid levels. In this chapter, first a hierarchical control structure is discussed for interconnecting the neighbour autonomous microgrids where the introduced primary control level is the main focus. Through the developed primary control level, it demonstrates how the parallel DERs in the system of multiple interconnected autonomous microgrids can properly share the load in the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralized power sharing algorithm based on droop control. The switching in the converters is controlled using a linear quadratic regulator based state feedback which is more stable than conventional proportional integrator controllers and this prevents instability among parallel DERs when two microgrids are interconnected. The efficacy of the primary control level of DERs in the system of multiple interconnected autonomous microgrids is validated through simulations considering detailed dynamic models of DERs and converters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With ever-increasing share of power electronic loads constant power instability is becoming a significant issue in microgrids, especially when they operate in the islanding mode. Transient conditions like resistive load-shedding or sudden increase of constant power loads (CPL) might destabilize the whole system. Modeling and stability analysis of AC microgrids with CPLs have already been discussed in literature. However, no effective solutions are provided to stabilize this kind of system. Therefore, this paper proposes a virtual resistance based active damping method to eliminate constant power instability in AC microgrids. Advantages and limitations of the proposed method are also discussed in detail. Simulation results are presented to validate the proposed active damping solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Re-supplying loads on outage through cross-connect from adjacent feeders in a distribution system may cause voltage drop and hence require load shedding. However, the surplus PV generated in some of the LV feeders can prevent load shedding, and improve reliability. In order to measure these effects, this paper proposes the application of Direct Load Flow method[1] in reliability evaluation of distribution systems with PV units. As part of this study, seasonal impacts on load consumption together with surplus PV output power injection to higher voltage networks are also considered. New indices are proposed to measure yearly expected energy export, from LV to MV and from MV to higher voltage network.