102 resultados para linear mixed-effects models
em Queensland University of Technology - ePrints Archive
Resumo:
Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models.
Resumo:
In this paper, we present fully Bayesian experimental designs for nonlinear mixed effects models, in which we develop simulation-based optimal design methods to search over both continuous and discrete design spaces. Although Bayesian inference has commonly been performed on nonlinear mixed effects models, there is a lack of research into performing Bayesian optimal design for nonlinear mixed effects models that require searches to be performed over several design variables. This is likely due to the fact that it is much more computationally intensive to perform optimal experimental design for nonlinear mixed effects models than it is to perform inference in the Bayesian framework. In this paper, the design problem is to determine the optimal number of subjects and samples per subject, as well as the (near) optimal urine sampling times for a population pharmacokinetic study in horses, so that the population pharmacokinetic parameters can be precisely estimated, subject to cost constraints. The optimal sampling strategies, in terms of the number of subjects and the number of samples per subject, were found to be substantially different between the examples considered in this work, which highlights the fact that the designs are rather problem-dependent and require optimisation using the methods presented in this paper.
Resumo:
A computationally efficient sequential Monte Carlo algorithm is proposed for the sequential design of experiments for the collection of block data described by mixed effects models. The difficulty in applying a sequential Monte Carlo algorithm in such settings is the need to evaluate the observed data likelihood, which is typically intractable for all but linear Gaussian models. To overcome this difficulty, we propose to unbiasedly estimate the likelihood, and perform inference and make decisions based on an exact-approximate algorithm. Two estimates are proposed: using Quasi Monte Carlo methods and using the Laplace approximation with importance sampling. Both of these approaches can be computationally expensive, so we propose exploiting parallel computational architectures to ensure designs can be derived in a timely manner. We also extend our approach to allow for model uncertainty. This research is motivated by important pharmacological studies related to the treatment of critically ill patients.
Resumo:
This paper presents a maximum likelihood method for estimating growth parameters for an aquatic species that incorporates growth covariates, and takes into consideration multiple tag-recapture data. Individual variability in asymptotic length, age-at-tagging, and measurement error are also considered in the model structure. Using distribution theory, the log-likelihood function is derived under a generalised framework for the von Bertalanffy and Gompertz growth models. Due to the generality of the derivation, covariate effects can be included for both models with seasonality and tagging effects investigated. Method robustness is established via comparison with the Fabens, improved Fabens, James and a non-linear mixed-effects growth models, with the maximum likelihood method performing the best. The method is illustrated further with an application to blacklip abalone (Haliotis rubra) for which a strong growth-retarding tagging effect that persisted for several months was detected
Resumo:
Hybrid system representations have been applied to many challenging modeling situations. In these hybrid system representations, a mixture of continuous and discrete states is used to capture the dominating behavioural features of a nonlinear, possible uncertain, model under approximation. Unfortunately, the problem of how to best design a suitable hybrid system model has not yet been fully addressed. This paper proposes a new joint state measurement relative entropy rate based approach for this design purpose. Design examples and simulation studies are presented which highlight the benefits of our proposed design approaches.
Resumo:
Menopausal transition can be challenging for many women. This study tested the effectiveness of an intervention delivered in different modes in decreasing menopausal symptoms in midlife women. The Women's Wellness Program (WWP) intervention was delivered to 225 Australian women aged between 40 and 65 years through three modes (i.e., on-line independent, face-to-face with nurse consultations, and on-line with virtual nurse consultations). All women in the study were provided with a 12-week Program Book outlining healthy lifestyle behaviors while women in the consultation groups were supported by a registered nurse who provide tailored health education and assisted with individual goal setting for exercise, healthy eating, smoking and alcohol consumption. Pre- and post-intervention data were collected on menopausal symptoms (Greene Climacteric Scale), health related quality of life (SF12), and modifiable lifestyle factors. Linear mixed-effect models showed an average 0.87 and 1.23 point reduction in anxiety (p < 0.01) and depression scores (p < 0.01) over time in all groups. Results also demonstrated reduced vasomotor symptoms (β = −0.19, SE = 0.10, p = 0.04) and sexual dysfunction (β = −0.17, SE = 0.06, p < 0.01) in all participants though women in the face-to-face group generally reported greater reductions than women in the other groups. This lifestyle intervention embedded within a wellness framework has the potential to reduce menopausal symptoms and improve quality of life in midlife women thus potentially enhancing health and well-being in women as they age. Of course, study replication is needed to confirm the intervention effects.
Resumo:
Previous studies have shown that the external growth records of the posterior adductor muscle scar (PAMS) of the bivalve Pinna nobilis are incomplete and do not produce accurate age estimations. We have developed a new methodology to study age and growth using the inner record of the PAMS, which avoids the necessity of costly in situ shell measurements or isotopic studies. Using the inner record we identified the positions of PAMS previously obscured by nacre and estimated the number of missing records in adult specimens with strong abrasion of the calcite layer in the anterior portion of the shell. The study of the PAMS and inner record of two shells that were 6 years old when collected showed that only 2 and 3 PAMS were observed, while 6 inner records could be counted, thus confirming our working methodology. Growth parameters of a P. nobilis population located in Moraira, Spain (western Mediterranean) were estimated with the new methodology and compared to those obtained using PAMS data and in situ measurements. For the comparisons, we applied different models considering the data alternatively as length-at-age (LA) and tag-recapture (TR). Among every method we tested to fit the Von Bertalanffy growth model, we observed that LA data from inner record fitted to the model using non-linear mixed effects and the estimation of missing records using the calcite width was the most appropriate. The equation obtained with this method, L = 573*(1 - e(-0.16(t-0.02))), is very similar to that calculated previously from in situ measurements for the same population.
Resumo:
In 2001, the red imported fire ant (Solenopsis invicta Buren) was identified in Brisbane, Australia. An eradication program involving broadcast bait treatment with two insect growth regulators and a metabolic inhibitor began in September of that year and is currently ongoing. To gauge the impacts of these treatments on local ant populations, we examined long-term monitoring data and quantified abundance patterns of S. invicta and common local ant genera using a linear mixed-effects model. For S. invicta, presence in pitfalls reduced over time to zero on every site. Significantly higher numbers of S. invicta workers were collected on high-density polygyne sites, which took longer to disinfest compared with monogyne and low-density polygyne sites. For local ants, nine genus groups of the 10 most common genera analyzed either increased in abundance or showed no significant trend. Five of these genus groups were significantly less abundant at the start of monitoring on high-density polygyne sites compared with monogyne and low-density polygyne sites. The genus Pheidole significantly reduced in abundance over time, suggesting that it was affected by treatment efforts. These results demonstrate that the treatment regime used at the time successfully removed S. invicta from these sites in Brisbane, and that most local ant genera were not seriously impacted by the treatment. These results have important implications for current and future prophylactic treatment efforts, and suggest that native ants remain in treated areas to provide some biological resistance to S. invicta.
Resumo:
This thesis progresses Bayesian experimental design by developing novel methodologies and extensions to existing algorithms. Through these advancements, this thesis provides solutions to several important and complex experimental design problems, many of which have applications in biology and medicine. This thesis consists of a series of published and submitted papers. In the first paper, we provide a comprehensive literature review on Bayesian design. In the second paper, we discuss methods which may be used to solve design problems in which one is interested in finding a large number of (near) optimal design points. The third paper presents methods for finding fully Bayesian experimental designs for nonlinear mixed effects models, and the fourth paper investigates methods to rapidly approximate the posterior distribution for use in Bayesian utility functions.
Resumo:
Despite recent efforts to assess the release of nanoparticles to the workplace during different nanotechnology activities, the existence of a generalizable trend in the particle release has yet to be identified. This study aimed to characterize the release of synthetic clay nanoparticles from a laboratory-based jet milling process by quantifying the variations arising from primary particle size and surface treatment of the material used, as well as the feed rate of the machine. A broad range of materials were used in this study, and the emitted particles mass (PM2.5) and number concentrations (PNC) were measured at the release source. Analysis of variance, followed by linear mixed-effects modeling, was applied to quantify the variations in PM2.5 and PNC of the released particles caused by the abovementioned factors. The results confirmed that using materials of different primary size and surface treatment affects the release of the particles from the same process by causing statistically-significant variations in PM2.5 and PNC. The interaction of these two factors should also be taken into account as it resulted in variations in the measured particles release properties. Furthermore, the feed rate of the milling machine was confirmed to be another influencing parameter. Although this research does not identify a specific pattern in the release of synthetic clay nanoparticles from the jet milling process generalizable to other similar settings, it emphasizes that each tested case should be handled individually in terms of exposure considerations.
Resumo:
Statistical methods are often used to analyse commercial catch and effort data to provide standardised fishing effort and/or a relative index of fish abundance for input into stock assessment models. Achieving reliable results has proved difficult in Australia's Northern Prawn Fishery (NPF), due to a combination of such factors as the biological characteristics of the animals, some aspects of the fleet dynamics, and the changes in fishing technology. For this set of data, we compared four modelling approaches (linear models, mixed models, generalised estimating equations, and generalised linear models) with respect to the outcomes of the standardised fishing effort or the relative index of abundance. We also varied the number and form of vessel covariates in the models. Within a subset of data from this fishery, modelling correlation structures did not alter the conclusions from simpler statistical models. The random-effects models also yielded similar results. This is because the estimators are all consistent even if the correlation structure is mis-specified, and the data set is very large. However, the standard errors from different models differed, suggesting that different methods have different statistical efficiency. We suggest that there is value in modelling the variance function and the correlation structure, to make valid and efficient statistical inferences and gain insight into the data. We found that fishing power was separable from the indices of prawn abundance only when we offset the impact of vessel characteristics at assumed values from external sources. This may be due to the large degree of confounding within the data, and the extreme temporal changes in certain aspects of individual vessels, the fleet and the fleet dynamics.
Resumo:
Background: The effect of patient education on reducing stroke has had mixed effects, raising questions about how to achieve optimal benefit. Because past evaluations have typically lacked an appropriate theoretical base, the design of past research may have missed important effects. --------- Method: This study used a social cognitive framework to identify variables that might change in response to education. A mixed design was used to evaluate two approaches to an intervention, both of which included education. Fifty seniors completed a measure of stroke knowledge and beliefs twice: before and after an intervention that was either standard (educational brochure plus activities that were not about stroke) or enhanced (educational brochure plus activities designed to enhance beliefs about stroke). Outcome measures were health beliefs, intention to exercise to reduce stroke, and stroke knowledge. --------- Results: Selected beliefs changed significantly over time but not differentially across conditions. Beliefs that changed were (a) perceived susceptibility to stroke and (b) perceived benefit of exercise to reduce risk. Benefit beliefs, in particular, were strongly and positively associated with intention to exercise. -------- Conclusion: Findings suggest that basic approaches to patient education may influence health beliefs. More effective stroke prevention programs may result from continued consideration of the role of health beliefs in such programs.
Resumo:
Maternal and infant mortality is a global health issue with a significant social and economic impact. Each year, over half a million women worldwide die due to complications related to pregnancy or childbirth, four million infants die in the first 28 days of life, and eight million infants die in the first year. Ninety-nine percent of maternal and infant deaths are in developing countries. Reducing maternal and infant mortality is among the key international development goals. In China, the national maternal mortality ratio and infant mortality rate were reduced greatly in the past two decades, yet a large discrepancy remains between urban and rural areas. To address this problem, a large-scale Safe Motherhood Programme was initiated in 2000. The programme was implemented in Guangxi in 2003. Interventions in the programme included both demand-side and supply side-interventions focusing on increasing health service use and improving birth outcomes. Little is known about the effects and economic outcomes of the Safe Motherhood Programme in Guangxi, although it has been implemented for seven years. The aim of this research is to estimate the effectiveness and cost-effectiveness of the interventions in the Safe Motherhood Programme in Guangxi, China. The objectives of this research include: 1. To evaluate whether the changes of health service use and birth outcomes are associated with the interventions in the Safe Motherhood Programme. 2. To estimate the cost-effectiveness of the interventions in the Safe Motherhood Programme and quantify the uncertainty surrounding the decision. 3. To assess the expected value of perfect information associated with both the whole decision and individual parameters, and interpret the findings to inform priority setting in further research and policy making in this area. A quasi-experimental study design was used in this research to assess the effectiveness of the programme in increasing health service use and improving birth outcomes. The study subjects were 51 intervention counties and 30 control counties. Data on the health service use, birth outcomes and socio-economic factors from 2001 to 2007 were collected from the programme database and statistical yearbooks. Based on the profile plots of the data, general linear mixed models were used to evaluate the effectiveness of the programme while controlling for the effects of baseline levels of the response variables, change of socio-economic factors over time and correlations among repeated measurements from the same county. Redundant multicollinear variables were deleted from the mixed model using the results of the multicollinearity diagnoses. For each response variable, the best covariance structure was selected from 15 alternatives according to the fit statistics including Akaike information criterion, Finite-population corrected Akaike information criterion, and Schwarz.s Bayesian information criterion. Residual diagnostics were used to validate the model assumptions. Statistical inferences were made to show the effect of the programme on health service use and birth outcomes. A decision analytic model was developed to evaluate the cost-effectiveness of the programme, quantify the decision uncertainty, and estimate the expected value of perfect information associated with the decision. The model was used to describe the transitions between health states for women and infants and reflect the change of both costs and health benefits associated with implementing the programme. Result gained from the mixed models and other relevant evidence identified were synthesised appropriately to inform the input parameters of the model. Incremental cost-effectiveness ratios of the programme were calculated for the two groups of intervention counties over time. Uncertainty surrounding the parameters was dealt with using probabilistic sensitivity analysis, and uncertainty relating to model assumptions was handled using scenario analysis. Finally the expected value of perfect information for both the whole model and individual parameters in the model were estimated to inform priority setting in further research in this area.The annual change rates of the antenatal care rate and the institutionalised delivery rate were improved significantly in the intervention counties after the programme was implemented. Significant improvements were also found in the annual change rates of the maternal mortality ratio, the infant mortality rate, the incidence rate of neonatal tetanus and the mortality rate of neonatal tetanus in the intervention counties after the implementation of the programme. The annual change rate of the neonatal mortality rate was also improved, although the improvement was only close to statistical significance. The influences of the socio-economic factors on the health service use indicators and birth outcomes were identified. The rural income per capita had a significant positive impact on the health service use indicators, and a significant negative impact on the birth outcomes. The number of beds in healthcare institutions per 1,000 population and the number of rural telephone subscribers per 1,000 were found to be positively significantly related to the institutionalised delivery rate. The length of highway per square kilometre negatively influenced the maternal mortality ratio. The percentage of employed persons in the primary industry had a significant negative impact on the institutionalised delivery rate, and a significant positive impact on the infant mortality rate and neonatal mortality rate. The incremental costs of implementing the programme over the existing practice were US $11.1 million from the societal perspective, and US $13.8 million from the perspective of the Ministry of Health. Overall, 28,711 life years were generated by the programme, producing an overall incremental cost-effectiveness ratio of US $386 from the societal perspective, and US $480 from the perspective of the Ministry of Health, both of which were below the threshold willingness-to-pay ratio of US $675. The expected net monetary benefit generated by the programme was US $8.3 million from the societal perspective, and US $5.5 million from the perspective of the Ministry of Health. The overall probability that the programme was cost-effective was 0.93 and 0.89 from the two perspectives, respectively. The incremental cost-effectiveness ratio of the programme was insensitive to the different estimates of the three parameters relating to the model assumptions. Further research could be conducted to reduce the uncertainty surrounding the decision, in which the upper limit of investment was US $0.6 million from the societal perspective, and US $1.3 million from the perspective of the Ministry of Health. It is also worthwhile to get a more precise estimate of the improvement of infant mortality rate. The population expected value of perfect information for individual parameters associated with this parameter was US $0.99 million from the societal perspective, and US $1.14 million from the perspective of the Ministry of Health. The findings from this study have shown that the interventions in the Safe Motherhood Programme were both effective and cost-effective in increasing health service use and improving birth outcomes in rural areas of Guangxi, China. Therefore, the programme represents a good public health investment and should be adopted and further expanded to an even broader area if possible. This research provides economic evidence to inform efficient decision making in improving maternal and infant health in developing countries.
Resumo:
This paper describes a generalised linear mixed model (GLMM) approach for understanding spatial patterns of participation in population health screening, in the presence of multiple screening facilities. The models presented have dual focus, namely the prediction of expected patient flows from regions to services and relative rates of participation by region- service combination, with both outputs having meaningful implications for the monitoring of current service uptake and provision. The novelty of this paper lies with the former focus, and an approach for distributing expected participation by region based on proximity to services is proposed. The modelling of relative rates of participation is achieved through the combination of different random effects, as a means of assigning excess participation to different sources. The methodology is applied to participation data collected from a government-funded mammography program in Brisbane, Australia.