12 resultados para infinito Cantor numeri transfiniti
em Queensland University of Technology - ePrints Archive
Resumo:
A preliminary survey of 34 suicides among patients attending community services for the chronically mentally ill revealed a rate of 520 per 100,000 admitted. In contrast to earlier hospital surveys, no risk variables were identified for patients dying by suicide. Thirty-four percent of suicides occurred within one week of the last treatment and 59% within 3 months of service entry. It appears that early and intensive follow-up may be necessary to prevent suicide among patients receiving community psychiatric care.
Resumo:
Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.
Resumo:
The development of breast cancer is a complex process that involves multiple genes at many stages, from initial cell cycle dysregulation to disease progression. To identify genetic variations that influence this process, we conducted a large-scale association study using a collection of German cases and controls and >25,000 SNPs located within 16,000 genes. One of the loci identified was located on chromosome 11q13 [odds ratio (OR)=1.85, P=0.017]. The initial association was subsequently tested in two independent breast cancer collections. In both sample sets, the frequency of the susceptibility allele was increased in the cases (OR=1.6, P=0.01). The susceptibility allele was also associated with an increase in cancer family history (P=0.1). Fine mapping showed that the region of association extends approximately 300 kb and spans several genes, including the gene encoding the nuclear mitotic apparatus protein (NuMA). A nonsynonymous SNP (A794G) in NuMA was identified that showed a stronger association with breast cancer risk than the initial marker SNP (OR=2.8, P=0.005 initial sample; OR=2.1, P=0.002 combined). NuMA is a cell cycle-related protein essential for normal mitosis that is degraded in early apoptosis. NuMA-retinoic acid receptor alpha fusion proteins have been described in acute promyelocytic leukemia. Although the potential functional relevance of the A794G variation requires further biological validation, we conclude that variations in the NuMA gene are likely responsible for the observed increased breast cancer risk.
Resumo:
We conducted a large-scale association study to identify genes that influence nonfamilial breast cancer risk using a collection of German cases and matched controls and >25,000 single nucleotide polymorphisms located within 16,000 genes. One of the candidate loci identified was located on chromosome 19p13.2 [odds ratio (OR) = 1.5, P = 0.001]. The effect was substantially stronger in the subset of cases with reported family history of breast cancer (OR = 3.4, P = 0.001). The finding was subsequently replicated in two independent collections (combined OR = 1.4, P < 0.001) and was also associated with predisposition to prostate cancer in an independent sample set of prostate cancer cases and matched controls (OR = 1.4, P = 0.002). High-density single nucleotide polymorphism mapping showed that the extent of association spans 20 kb and includes the intercellular adhesion molecule genes ICAM1, ICAM4, and ICAM5. Although genetic variants in ICAM5 showed the strongest association with disease status, ICAM1 is expressed at highest levels in normal and tumor breast tissue. A variant in ICAM5 was also associated with disease progression and prognosis. Because ICAMs are suitable targets for antibodies and small molecules, these findings may not only provide diagnostic and prognostic markers but also new therapeutic opportunities in breast and prostate cancer.
Resumo:
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10 -16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10 -12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10 -7).
Resumo:
The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
Resumo:
Background Schizophrenia is associated with lower pre-morbid intelligence (IQ) in addition to (pre-morbid) cognitive decline. Both schizophrenia and IQ are highly heritable traits. Therefore, we hypothesized that genetic variants associated with schizophrenia, including copy number variants (CNVs) and a polygenic schizophrenia (risk) score (PSS), may influence intelligence. Method IQ was estimated with the Wechsler Adult Intelligence Scale (WAIS). CNVs were determined from single nucleotide polymorphism (SNP) data using the QuantiSNP and PennCNV algorithms. For the PSS, odds ratios for genome-wide SNP data were calculated in a sample collected by the Psychiatric Genome-Wide Association Study (GWAS) Consortium (8690 schizophrenia patients and 11 831 controls). These were used to calculate individual PSSs in our independent sample of 350 schizophrenia patients and 322 healthy controls. Results Although significantly more genes were disrupted by deletions in schizophrenia patients compared to controls (p = 0.009), there was no effect of CNV measures on IQ. The PSS was associated with disease status (R 2 = 0.055, p = 2.1 × 10 -7) and with IQ in the entire sample (R 2 = 0.018, p = 0.0008) but the effect on IQ disappeared after correction for disease status. Conclusions Our data suggest that rare and common schizophrenia-associated variants do not explain the variation in IQ in healthy subjects or in schizophrenia patients. Thus, reductions in IQ in schizophrenia patients may be secondary to other processes related to schizophrenia risk. © Cambridge University Press 2013.
Resumo:
We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10 -11) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10 -9), ANK3 (rs10994359, P = 2.5 × 10 -8) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10 -9).
Resumo:
Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 +/- 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 +/- 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 +/- 0.06 s.e.), and ADHD and major depressive disorder (0.32 +/- 0.07 s.e.), low between schizophrenia and ASD (0.16 +/- 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.
Genome-wide linkage and association analyses implicate FASN in predisposition to Uterine Leiomyomata
Resumo:
Uterine leiomyomata (UL), the most prevalent pelvic tumors in women of reproductive age, pose a major public health problem given their high frequency, associated morbidities, and most common indication for hysterectomies. A genetic component to UL predisposition is supported by analyses of ethnic predisposition, twin studies, and familial aggregation. A genome-wide SNP linkage panel was genotyped and analyzed in 261 white UL-affected sister-pair families from the Finding Genes for Fibroids study. Two significant linkage regions were detected in 10p11 (LOD = 4.15) and 3p21 (LOD = 3.73), and five additional linkage regions were identified with LOD scores > 2.00 in 2q37, 5p13, 11p15, 12q14, and 17q25. Genome-wide association studies were performed in two independent cohorts of white women, and a meta-analysis was conducted. One SNP (rs4247357) was identified with a p value (p = 3.05 x 10(-8)) that reached genome-wide significance (odds ratio = 1.299). The candidate SNP is under a linkage peak and in a block of linkage disequilibrium in 17q25.3, which spans fatty acid synthase (FASN), coiled-coil-domain-containing 57 (CCDC57), and solute-carrier family 16, member 3 (SLC16A3). By tissue microarray immunohistochemistry, we found elevated (3-fold) FAS levels in UL-affected tissue compared to matched myometrial tissue. FAS transcripts and/or protein levels are upregulated in various neoplasms and implicated in tumor cell survival. FASN represents the initial UL risk allele identified in white women by a genome-wide, unbiased approach and opens a path to management and potential therapeutic intervention.