426 resultados para infection risk
em Queensland University of Technology - ePrints Archive
Resumo:
Background: Room ventilation is a key determinant of airborne disease transmission. Despite this, ventilation guidelines in hospitals are not founded on robust scientific evidence related to prevention of airborne transmission. Methods: We sought to assess the effect of ventilation rates on influenza, tuberculosis (TB) and rhinovirus infection risk within three distinct rooms in a major urban hospital; a Lung Function Laboratory, Emergency Department (ED) Negative-pressure Isolation Room and an Outpatient Consultation Room were investigated. Air exchange rate measurements were performed in each room using CO2 as a tracer. Gammaitoni and Nucci’s model was employed to estimate infection risk. Results: Current outdoor air exchange rates in the Lung Function Laboratory and ED Isolation Room limited infection risks to between 0.1 and 3.6%. Influenza risk for individuals entering an Outpatient Consultation Room after an infectious individual departed ranged from 3.6 to 20.7%, depending on the duration for which each person occupied the room. Conclusions: Given the absence of definitive ventilation guidelines for hospitals, air exchange measurements combined with modelling afford a useful means of assessing, on a case-by-case basis, the suitability of room ventilation at preventing airborne disease transmission.
Resumo:
Background We investigated the geographical variation of water supply and sanitation indicators (WS&S) and their role to the risk of schistosomiasis and hookworm infection in school age children in West Africa. The aim was to predict large-scale geographical variation in WS&S, quantify the attributable risk of S. haematobium, S. mansoni and hookworm infections due to WS&S and identify communities where sustainable transmission control could be targeted across the region. Methods National cross-sectional household-based demographic health surveys were conducted in 24,542 households in Burkina Faso, Ghana and Mali, in 2003–2006. We generated spatially-explicit predictions of areas without piped water, toilet facilities and finished floors in West Africa, adjusting for household covariates. Using recently published helminth prevalence data we developed Bayesian geostatistical models (MGB) of S. haematobium, S. mansoni and hookworm infection in West Africa including environmental and the mapped outputs for WS&S. Using these models we estimated the effect of WS&S on parasite risk, quantified their attributable fraction of infection, and mapped the risk of infection in West Africa. Findings Our maps show that most areas in West Africa are very poorly served by water supply except in major urban centers. There is a better geographical coverage for toilet availability and improved household flooring. We estimated smaller attributable risks for water supply in S. mansoni (47%) compared to S. haematobium (71%), and 5% of hookworm cases could be averted by improving sanitation. Greater levels of inadequate sanitation increased the risk of schistosomiasis, and increased levels of unsafe water supply increased the risk of hookworm. The role of floor type for S. haematobium infection (21%) was comparable to that of S. mansoni (16%), but was significantly higher for hookworm infection (86%). S. haematobium and hookworm maps accounting for WS&S show small clusters of maximal prevalence areas in areas bordering Burkina Faso and Mali smaller. The map of S. mansoni shows that this parasite is much more wide spread across the north of the Niger River basin than previously predicted. Interpretation Our maps identify areas where the Millennium Development Goal for water and sanitation is lagging behind. Our results show that WS&S are important contributors to the burden of major helminth infections of children in West Africa. Including information about WS&S as well as the “traditional” environmental risk factors in spatial models of helminth risk yielded a substantial gain both in model fit and at explaining the proportion of spatial variance in helminth risk. Mapping the distribution of infection risk adjusted for WS&S allowed the identification of communities in West Africa where integrative preventive chemotherapy and engineering interventions will yield the greatest public health benefits.
Resumo:
Travel in passenger cars is a ubiquitous aspect of the daily activities of many people. During the 2009 influenza A (H1N1) pandemic a case of probable transmission during car travel was reported in Australia, to which spread via the airborne route may have contributed. However, there are no data to indicate the likely risks of such events, and how they may vary and be mitigated. To address this knowledge gap, we estimated the risk of airborne influenza transmission in two cars (1989 model and 2005 model) by employing ventilation measurements and a variation of the Wells-Riley model. Results suggested that infection risk can be reduced by not recirculating air; however, estimated risk ranged from 59 to 99.9% for a 90 min trip when air was recirculated in the newer vehicle. These results have implications for interrupting in-car transmission of other illnesses spread by the airborne route.
Resumo:
Indoor air quality is a critical factor in the classroom due to high people concentration in a unique space. Indoor air pollutant might increase the chance of both long and short-term health problems among students and staff, reduce the productivity of teachers and degrade the student’s learning environment and comfort. Adequate air distribution strategies may reduce risk of infection in classroom. So, the purpose of air distribution systems in a classroom is not only to maximize conditions for thermal comfort, but also to remove indoor contaminants. Natural ventilation has the potential to play a significant role in achieving improvements in IAQ. The present study compares the risk of airborne infection between Natural Ventilation (opening windows and doors) and a Split-System Air Conditioner in a university classroom. The Wells-Riley model was used to predict the risk of indoor airborne transmission of infectious diseases such as influenza, measles and tuberculosis. For each case, the air exchange rate was measured using a CO2 tracer gas technique. It was found that opening windows and doors provided an air exchange rate of 2.3 air changes/hour (ACH), while with the Split System it was 0.6 ACH. The risk of airborne infection ranged between 4.24 to 30.86 % when using the Natural Ventilation and between 8.99 to 43.19% when using the Split System. The difference of airborne infection risk between the Split System and the Natural Ventilation ranged from 47 to 56%. Opening windows and doors maximize Natural Ventilation so that the risk of airborne contagion is much lower than with Split System.
Resumo:
OBJECTIVE: To synthesise the available evidence and estimate the comparative efficacy of control strategies to prevent total hip replacement (THR)-related surgical site infections (SSIs) using a mixed treatment comparison. DESIGN: Systematic review and mixed treatment comparison. SETTING: Hospital and other healthcare settings. PARTICIPANTS: Patients undergoing THR. PRIMARY AND SECONDARY OUTCOME MEASURES: The number of THR-related SSIs occurring following the surgical operation. RESULTS: 12 studies involving 123 788 THRs and 9 infection control strategies were identified. The strategy of 'systemic antibiotics+antibiotic-impregnated cement+conventional ventilation' significantly reduced the risk of THR-related SSI compared with the referent strategy (no systemic antibiotics+plain cement+conventional ventilation), OR 0.13 (95% credible interval (CrI) 0.03-0.35), and had the highest probability (47-64%) and highest median rank of being the most effective strategy. There was some evidence to suggest that 'systemic antibiotics+antibiotic-impregnated cement+laminar airflow' could potentially increase infection risk compared with 'systemic antibiotics+antibiotic-impregnated cement+conventional ventilation', 1.96 (95% CrI 0.52-5.37). There was no high-quality evidence that antibiotic-impregnated cement without systemic antibiotic prophylaxis was effective in reducing infection compared with plain cement with systemic antibiotics, 1.28 (95% CrI 0.38-3.38). CONCLUSIONS: We found no convincing evidence in favour of the use of laminar airflow over conventional ventilation for prevention of THR-related SSIs, yet laminar airflow is costly and widely used. Antibiotic-impregnated cement without systemic antibiotics may not be effective in reducing THR-related SSIs. The combination with the highest confidence for reducing SSIs was 'systemic antibiotics+antibiotic-impregnated cement+conventional ventilation'. Our evidence synthesis underscores the need to review current guidelines based on the available evidence, and to conduct further high-quality double-blind randomised controlled trials to better inform the current clinical guidelines and practice for prevention of THR-related SSIs.
Resumo:
Objective To examine the risk factors for Mycobacterium tuberculosis infection (MTI) among Greenlandic children for the purpose of identifying those at highest risk of infection. Methods Between 2005 and 2007, 1797 Greenlandic schoolchildren in five different areas were tested for MTI with an interferon gamma release assay (IGRA) and a tuberculin skin test (TST). Parents or guardians were surveyed using a standardized self-administered questionnaire to obtain data on crowding in the household, parents’ educational level and the child’s health status. Demographic data for each child – i.e. parents’ place of birth, number of siblings, distance between siblings (next younger and next older), birth order and mother’s age when the child was born – were also extracted from a public registry. Logistic regression was used to check for associations between these variables and MTI, and all results were expressed as odds ratios (ORs) and 95% confidence intervals (CIs). Children were considered to have MTI if they tested positive on both the IGRA assay and the TST. Findings The overall prevalence of MTI was 8.5% (152/1797). MTI was diagnosed in 26.7% of the children with a known TB contact, as opposed to 6.4% of the children without such contact. Overall, the MTI rate was higher among Inuit children (OR: 4.22; 95% CI: 1.55–11.5) and among children born less than one year after the birth of the next older sibling (OR: 2.48; 95% CI: 1.33–4.63). Self-reported TB contact modified the profile to include household crowding and low mother’s education. Children who had an older MTI-positive sibling were much more likely to test positive for MTI themselves (OR: 14.2; 95% CI: 5.75–35.0) than children without an infected older sibling. Conclusion Ethnicity, sibling relations, number of household residents and maternal level of education are factors associated with the risk of TB infection among children in Greenland. The strong household clustering of MTI suggests that family sources of exposure are important.
Resumo:
Background Australian Indigenous children are the only population worldwide to receive the 7-valent pneumococcal conjugate vaccine (7vPCV) at 2, 4, and 6 months of age and the 23-valent pneumococcal polysaccharide vaccine (23vPPV) at 18 months of age. We evaluated this program's effectiveness in reducing the risk of hospitalization for acute lower respiratory tract infection (ALRI) in Northern Territory (NT) Indigenous children aged 5-23 months. Methods We conducted a retrospective cohort study involving all NT Indigenous children born from 1 April 2000 through 31 October 2004. Person-time at-risk after 0, 1, 2, and 3 doses of 7vPCV and after 0 and 1 dose of 23vPPV and the number of ALRI following each dose were used to calculate dose-specific rates of ALRI for children 5-23 months of age. Rates were compared using Cox proportional hazards models, with the number of doses of each vaccine serving as time-dependent covariates. Results There were 5482 children and 8315 child-years at risk, with 2174 episodes of ALRI requiring hospitalization (overall incidence, 261 episodes per 1000 child-years at risk). Elevated risk of ALRI requiring hospitalization was observed after each dose of the 7vPCV vaccine, compared with that for children who received no doses, and an even greater elevation in risk was observed after each dose of the 23vPPV ( adjusted hazard ratio [HR] vs no dose, 1.39; 95% confidence interval [CI], 1.12-1.71;). Risk was highest among children Pp. 002 vaccinated with the 23vPPV who had received < 3 doses of the 7vPCV (adjusted HR, 1.81; 95% CI, 1.32-2.48). Conclusions Our results suggest an increased risk of ALRI requiring hospitalization after pneumococcal vaccination, particularly after receipt of the 23vPPV booster. The use of the 23vPPV booster should be reevaluated.
Resumo:
Introduction Risk factor analyses for nosocomial infections (NIs) are complex. First, due to competing events for NI, the association between risk factors of NI as measured using hazard rates may not coincide with the association using cumulative probability (risk). Second, patients from the same intensive care unit (ICU) who share the same environmental exposure are likely to be more similar with regard to risk factors predisposing to a NI than patients from different ICUs. We aimed to develop an analytical approach to account for both features and to use it to evaluate associations between patient- and ICU-level characteristics with both rates of NI and competing risks and with the cumulative probability of infection. Methods We considered a multicenter database of 159 intensive care units containing 109,216 admissions (813,739 admission-days) from the Spanish HELICS-ENVIN ICU network. We analyzed the data using two models: an etiologic model (rate based) and a predictive model (risk based). In both models, random effects (shared frailties) were introduced to assess heterogeneity. Death and discharge without NI are treated as competing events for NI. Results There was a large heterogeneity across ICUs in NI hazard rates, which remained after accounting for multilevel risk factors, meaning that there are remaining unobserved ICU-specific factors that influence NI occurrence. Heterogeneity across ICUs in terms of cumulative probability of NI was even more pronounced. Several risk factors had markedly different associations in the rate-based and risk-based models. For some, the associations differed in magnitude. For example, high Acute Physiology and Chronic Health Evaluation II (APACHE II) scores were associated with modest increases in the rate of nosocomial bacteremia, but large increases in the risk. Others differed in sign, for example respiratory vs cardiovascular diagnostic categories were associated with a reduced rate of nosocomial bacteremia, but an increased risk. Conclusions A combination of competing risks and multilevel models is required to understand direct and indirect risk factors for NI and distinguish patient-level from ICU-level factors.
Resumo:
Background Knowledge about genital Chlamydia trachomatis (CT) infections in the Pacific is limited. In this study we investigated CT infection in Samoan women. Methods We recruited women having unprotected sex aged 18 to 29 years from 41 Samoan villages. They completed a questionnaire and provided a urine sample for CT testing by PCR. Associations between CT infection and possible risk factors were explored using logistic regression. Results Altogether, 239 women were recruited; 86 (36.0%; weighted estimate of prevalence: 41.9%; 95% CI: 33.4–50.5%) were positive for CT infection. A higher proportion of women aged 18 to 24 were positive (54/145; 37.2%) than those aged 25 to 29 (32/94; 34.0%; p=0.20). Being single (OR 1.92; 95% CI: 1.02–3.63) and having two or more lifetime sexual partners (OR 3.02; 95% CI: 1.19–7.67) were associated with CT infection; 27.6% of those with one lifetime partner were positive. Participants who had a previous pregnancy were less likely to be positive (OR 0.49; 95% CI: 0.27–0.87). Primiparous and multiparous women were less likely to be positive than nulliparous women (OR 0.54; 95% CI: 0.30–0.99 and OR 0.46; 95% CI: 0.24–0.89, respectively). Conclusions The prevalence of CT infection in these Samoan women is very high. Further studies, including investigating the prevalence of CT infection in men, and strategies for sustainable control are needed.
Resumo:
The prevalence of human papillomavirus (HPV)–associated head and neck cancers is increasing, but the prevalence of oral HPV infection in the wider community remains unknown. We sought to determine the prevalence of, and identify risk factors for, oral HPV infection in a sample of young, healthy Australians. For this study, we recruited 307 Australian university students (18–35 years). Participants reported anonymously about basic characteristics, sexual behaviour, and alcohol, tobacco and illicit drugs use. We collected oral rinse samples from all participants for HPV testing and typing. Seven of 307 (2.3%) students tested positive for oral HPV infection (3 HPV-18, one each of HPV-16, -67, -69, -90), and six of them were males (p = 0.008). Compared to HPV negative students, those with oral HPV infection were more likely to have received oral sex from more partners in their lifetime (p = 0.0004) and in the last year (p = 0.008). We found no statistically significant associations with alcohol consumption, smoking or numbers of partners for passionate kissing or sexual intercourse. In conclusion, oral HPV infection was associated with male gender and receiving oral sex in our sample of young Australians.
Resumo:
Hospital acquired infections (HAI) are costly but many are avoidable. Evaluating prevention programmes requires data on their costs and benefits. Estimating the actual costs of HAI (a measure of the cost savings due to prevention) is difficult as HAI changes cost by extending patient length of stay, yet, length of stay is a major risk factor for HAI. This endogeneity bias can confound attempts to measure accurately the cost of HAI. We propose a two-stage instrumental variables estimation strategy that explicitly controls for the endogeneity between risk of HAI and length of stay. We find that a 10% reduction in ex ante risk of HAI results in an expected savings of £693 ($US 984).