31 resultados para imperfect
em Queensland University of Technology - ePrints Archive
Resumo:
This thesis investigates the phenomenon of self-harm as a form of political protest using two different, but complementary, methods of inquiry: a theoretical research project and a novel. Through these two approaches, to the same research problem, I examine how we can re-position the body that self-harms in political protest from weapon to voice; and in doing so find a path towards ethical and equitable dialogue between marginalised and mainstream communities. The theoretical, or academic, portion of the thesis examines self-harm as protest, positing these acts as a form of tactical selfharm, and acknowledge its emergence as a voice for the otherwise silenced in the public sphere. Through the use of phenomenology and feminist theory I examine the body as site for political agency, the circumstances which surround the use of the body for protest, and the reaction to tactical self-harm by the individual and the state. Using Bakhtin’s concept of dialogism, and the dialogic space I propose that by ‘hearing’ the body engaged in tactical selfharm we come closer to entering into an ethical dialogue with the otherwise silenced in our communities (locally, nationally and globally). The novel, Imperfect Offerings, explores these ideas in a fictional world, and allows me to put faces, names and lives to those who are compelled to harm their bodies to be heard. Also using Bakhtin’s framework I encourage a dialogue between the critical and creative parts of the thesis, challenging the traditional paradigm of creative PhD projects as creative work and exegesis.
Resumo:
This dissertation analyses how physical objects are translated into digital artworks using techniques which can lead to ‘imperfections’ in the resulting digital artwork that are typically removed to arrive at a ‘perfect’ final representation. The dissertation discusses the adaptation of existing techniques into an artistic workflow that acknowledges and incorporates the imperfections of translation into the final pieces. It presents an exploration of the relationship between physical and digital artefacts and the processes used to move between the two. The work explores the 'craft' of digital sculpting and the technology used in producing what the artist terms ‘a naturally imperfect form’, incorporating knowledge of traditional sculpture, an understanding of anatomy and an interest in the study of bones (Osteology). The outcomes of the research are presented as a series of digital sculptural works, exhibited as a collection of curiosities in multiple mediums, including interactive game spaces, augmented reality (AR), rapid prototype prints (RP) and video displays.
Resumo:
We address the problem of finite horizon optimal control of discrete-time linear systems with input constraints and uncertainty. The uncertainty for the problem analysed is related to incomplete state information (output feedback) and stochastic disturbances. We analyse the complexities associated with finding optimal solutions. We also consider two suboptimal strategies that could be employed for larger optimization horizons.
Resumo:
This paper shows that under imperfect competition, the welfare effects of indirect tax harmonization may depend crucially on whether taxes are levied by the destination or the origin principle. In a standard model of imperfect competition, while harmonization always makes at least one country better off, and may be Pareto-improving, when taxes are levied under the destination principle (which currently applies in the European Union), harmonization of origin-based taxes (as recently proposed by the European Commission) is certain to be Pareto-worsening when the preferences in the two countries are identical, and is likely to be so even when they differ.
Resumo:
Pipelines play an important role in the modern society. Failures of pipelines can have great impacts on economy, environment and community. Preventive maintenance (PM) is often conducted to improve the reliability of pipelines. Modern asset management practice requires accurate predictability of the reliability of pipelines with multiple PM actions, especially when these PM actions involve imperfect repairs. To address this issue, a split system approach (SSA) based model is developed in this paper through an industrial case study. This new model enables maintenance personnel to predict the reliability of pipelines with different PM strategies and hence effectively assists them in making optimal PM decisions.
Resumo:
Information Retrieval is an important albeit imperfect component of information technologies. A problem of insufficient diversity of retrieved documents is one of the primary issues studied in this research. This study shows that this problem leads to a decrease of precision and recall, traditional measures of information retrieval effectiveness. This thesis presents an adaptive IR system based on the theory of adaptive dual control. The aim of the approach is the optimization of retrieval precision after all feedback has been issued. This is done by increasing the diversity of retrieved documents. This study shows that the value of recall reflects this diversity. The Probability Ranking Principle is viewed in the literature as the “bedrock” of current probabilistic Information Retrieval theory. Neither the proposed approach nor other methods of diversification of retrieved documents from the literature conform to this principle. This study shows by counterexample that the Probability Ranking Principle does not in general lead to optimal precision in a search session with feedback (for which it may not have been designed but is actively used). Retrieval precision of the search session should be optimized with a multistage stochastic programming model to accomplish the aim. However, such models are computationally intractable. Therefore, approximate linear multistage stochastic programming models are derived in this study, where the multistage improvement of the probability distribution is modelled using the proposed feedback correctness method. The proposed optimization models are based on several assumptions, starting with the assumption that Information Retrieval is conducted in units of topics. The use of clusters is the primary reasons why a new method of probability estimation is proposed. The adaptive dual control of topic-based IR system was evaluated in a series of experiments conducted on the Reuters, Wikipedia and TREC collections of documents. The Wikipedia experiment revealed that the dual control feedback mechanism improves precision and S-recall when all the underlying assumptions are satisfied. In the TREC experiment, this feedback mechanism was compared to a state-of-the-art adaptive IR system based on BM-25 term weighting and the Rocchio relevance feedback algorithm. The baseline system exhibited better effectiveness than the cluster-based optimization model of ADTIR. The main reason for this was insufficient quality of the generated clusters in the TREC collection that violated the underlying assumption.
Resumo:
This paper estimates a simultaneous-equation model of wages and prices for Australia, underpinned by a competing claims framework of imperfect competition. Two separate co-integrating relationships for wages and prices are identified by imposing the economic hypotheses implied by the theory. The steady-state relationships for wages and prices are then embedded in a parsimonious, dynamic wage-price model. The final model is both simple and parsimonious and able to describe the process of wage and price inflation in Australia
Resumo:
Internship and practicum are the pinnacle of the therapist training experience. During these fieldwork experiences trainees are challenged to apply what they have learned in coursework and research to a real-life workplace situation. Internship is where the rigorous science of the profession and the imperfect art of the practice intersect and trainees begin to develop clinical wisdom. The trainee therapist being prepared for their responsibilities who has a successful relationship with their supervisor can optimise the gains from this integrated experience. In this chapter, an introduction to supervised internship or practicum encounters is provided with the trainee therapist and future supervisor squarely in mind.
Resumo:
Myosin is believed to act as the molecular motor for many actin-based motility processes in eukaryotes. It is becoming apparent that a single species may possess multiple myosin isoforms, and at least seven distinct classes of myosin have been identified from studies of animals, fungi, and protozoans. The complexity of the myosin heavy-chain gene family in higher plants was investigated by isolating and characterizing myosin genomic and cDNA clones from Arabidopsis thaliana. Six myosin-like genes were identified from three polymerase chain reaction (PCR) products (PCR1, PCR11, PCR43) and three cDNA clones (ATM2, MYA2, MYA3). Sequence comparisons of the deduced head domains suggest that these myosins are members of two major classes. Analysis of the overall structure of the ATM2 and MYA2 myosins shows that they are similar to the previously-identified ATM1 and MYA1 myosins, respectively. The MYA3 appears to possess a novel tail domain, with five IQ repeats, a six-member imperfect repeat, and a segment of unique sequence. Northern blot analyses indicate that some of the Arabidopsis myosin genes are preferentially expressed in different plant organs. Combined with previous studies, these results show that the Arabidopsis genome contains at least eight myosin-like genes representing two distinct classes.
Resumo:
Methicillin-resistant Staphylococcus Aureus (MRSA) is a pathogen that continues to be of major concern in hospitals. We develop models and computational schemes based on observed weekly incidence data to estimate MRSA transmission parameters. We extend the deterministic model of McBryde, Pettitt, and McElwain (2007, Journal of Theoretical Biology 245, 470–481) involving an underlying population of MRSA colonized patients and health-care workers that describes, among other processes, transmission between uncolonized patients and colonized health-care workers and vice versa. We develop new bivariate and trivariate Markov models to include incidence so that estimated transmission rates can be based directly on new colonizations rather than indirectly on prevalence. Imperfect sensitivity of pathogen detection is modeled using a hidden Markov process. The advantages of our approach include (i) a discrete valued assumption for the number of colonized health-care workers, (ii) two transmission parameters can be incorporated into the likelihood, (iii) the likelihood depends on the number of new cases to improve precision of inference, (iv) individual patient records are not required, and (v) the possibility of imperfect detection of colonization is incorporated. We compare our approach with that used by McBryde et al. (2007) based on an approximation that eliminates the health-care workers from the model, uses Markov chain Monte Carlo and individual patient data. We apply these models to MRSA colonization data collected in a small intensive care unit at the Princess Alexandra Hospital, Brisbane, Australia.
Resumo:
A review of the literature related to issues involved in irrigation induced agricultural development (IIAD) reveals that: (1) the magnitude, sensitivity and distribution of social welfare of IIAD is not fully analysed; (2) the impacts of excessive pesticide use on farmers’ health are not adequately explained; (3) no analysis estimates the relationship between farm level efficiency and overuse of agro-chemical inputs under imperfect markets; and (4) the method of incorporating groundwater extraction costs is misleading. This PhD thesis investigates these issues by using primary data, along with secondary data from Sri Lanka. The overall findings of the thesis can be summarised as follows. First, the thesis demonstrates that Sri Lanka has gained a positive welfare change as a result of introducing new irrigation technology. The change in the consumer surplus is Rs.48,236 million, while the change in the producer surplus is Rs. 14,274 millions between 1970 and 2006. The results also show that the long run benefits and costs of IIAD depend critically on the magnitude of the expansion of the irrigated area, as well as the competition faced by traditional farmers (agricultural crowding out effects). The traditional sector’s ability to compete with the modern sector depends on productivity improvements, reducing production costs and future structural changes (spillover effects). Second, the thesis findings on pesticides used for agriculture show that, on average, a farmer incurs a cost of approximately Rs. 590 to 800 per month during a typical cultivation period due to exposure to pesticides. It is shown that the value of average loss in earnings per farmer for the ‘hospitalised’ sample is Rs. 475 per month, while it is approximately Rs. 345 per month for the ‘general’ farmers group during a typical cultivation season. However, the average willingness to pay (WTP) to avoid exposure to pesticides is approximately Rs. 950 and Rs. 620 for ‘hospitalised’ and ‘general’ farmers’ samples respectively. The estimated percentage contribution for WTP due to health costs, lost earnings, mitigating expenditure, and disutility are 29, 50, 5 and 16 per cent respectively for hospitalised farmers, while they are 32, 55, 8 and 5 per cent respectively for ‘general’ farmers. It is also shown that given market imperfections for most agricultural inputs, farmers are overusing pesticides with the expectation of higher future returns. This has led to an increase in inefficiency in farming practices which is not understood by the farmers. Third, it is found that various groundwater depletion studies in the economics literature have provided misleading optimal water extraction quantity levels. This is due to a failure to incorporate all production costs in the relevant models. It is only by incorporating quality changes to quantity deterioration, that it is possible to derive socially optimal levels. Empirical results clearly show that the benefits per hectare per month considering both the avoidance costs of deepening agro-wells by five feet from the existing average, as well as the avoidance costs of maintaining the water salinity level at 1.8 (mmhos/Cm), is approximately Rs. 4,350 for farmers in the Anuradhapura district and Rs. 5,600 for farmers in the Matale district.
Resumo:
Due to the limitation of current condition monitoring technologies, the estimates of asset health states may contain some uncertainties. A maintenance strategy ignoring this uncertainty of asset health state can cause additional costs or downtime. The partially observable Markov decision process (POMDP) is a commonly used approach to derive optimal maintenance strategies when asset health inspections are imperfect. However, existing applications of the POMDP to maintenance decision-making largely adopt the discrete time and state assumptions. The discrete-time assumption requires the health state transitions and maintenance activities only happen at discrete epochs, which cannot model the failure time accurately and is not cost-effective. The discrete health state assumption, on the other hand, may not be elaborate enough to improve the effectiveness of maintenance. To address these limitations, this paper proposes a continuous state partially observable semi-Markov decision process (POSMDP). An algorithm that combines the Monte Carlo-based density projection method and the policy iteration is developed to solve the POSMDP. Different types of maintenance activities (i.e., inspections, replacement, and imperfect maintenance) are considered in this paper. The next maintenance action and the corresponding waiting durations are optimized jointly to minimize the long-run expected cost per unit time and availability. The result of simulation studies shows that the proposed maintenance optimization approach is more cost-effective than maintenance strategies derived by another two approximate methods, when regular inspection intervals are adopted. The simulation study also shows that the maintenance cost can be further reduced by developing maintenance strategies with state-dependent maintenance intervals using the POSMDP. In addition, during the simulation studies the proposed POSMDP shows the ability to adopt a cost-effective strategy structure when multiple types of maintenance activities are involved.
Resumo:
Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.
Resumo:
Object segmentation is one of the fundamental steps for a number of robotic applications such as manipulation, object detection, and obstacle avoidance. This paper proposes a visual method for incorporating colour and depth information from sequential multiview stereo images to segment objects of interest from complex and cluttered environments. Rather than segmenting objects using information from a single frame in the sequence, we incorporate information from neighbouring views to increase the reliability of the information and improve the overall segmentation result. Specifically, dense depth information of a scene is computed using multiple view stereo. Depths from neighbouring views are reprojected into the reference frame to be segmented compensating for imperfect depth computations for individual frames. The multiple depth layers are then combined with color information from the reference frame to create a Markov random field to model the segmentation problem. Finally, graphcut optimisation is employed to infer pixels belonging to the object to be segmented. The segmentation accuracy is evaluated over images from an outdoor video sequence demonstrating the viability for automatic object segmentation for mobile robots using monocular cameras as a primary sensor.