431 resultados para i-particle
em Queensland University of Technology - ePrints Archive
Resumo:
Epidemiological research has consistently shown an association between fine and ultrafine particle concentrations, and increases in both respiratory and cardiovascular morbidity and mortality. These particles, often found in vehicle emissions outside buildings, can penetrate inside via their envelopes and mechanically ventilated systems. Indoor activities such as printing, cooking and cleaning, as well as the movement of building occupants are also an additional source of these particles. In this context, the filtration systems of mechanically ventilated buildings can reduce indoor particle concentrations. Several studies have quantified the efficiency of dry-media and electrostatic filters, but they mainly focused on the particle size range > 300 nm. Some others studied ultrafine particles but their investigations were conducted in laboratories. At this point, there is still only limited information on in situ filter efficiency and an incomplete understanding of filtration influence on I/O ratios of particle concentrations. To help address these gaps in knowledge and provide new information for the selection of appropriate filter types in office building HVAC systems, we aimed to: (1) measure particle concentrations at up and down stream flows of filter devices, as well as outdoor and indoor office buildings; (2) quantify efficiency of different filter types at different buildings; and (3) assess the impact of these filters on I/O ratios at different indoor and outdoor source operation scenarios.
Resumo:
The release of ultrafine particles (UFP) from laser printers and office equipment was analyzed using a particle counter (FMPS; Fast Mobility Particle Sizer) with a high time resolution, as well as the appropriate mathematical models. Measurements were carried out in a 1 m³ chamber, a 24 m³ chamber and an office. The time-dependent emission rates were calculated for these environments using a deconvolution model, after which the total amount of emitted particles was calculated. The total amounts of released particles were found to be independent of the environmental parameters and therefore, in principle, they were appropriate for the comparison of different printers. On the basis of the time-dependent emission rates, “initial burst” emitters and constant emitters could also be distinguished. In the case of an “initial burst” emitter, the comparison to other devices is generally affected by strong variations between individual measurements. When conducting exposure assessments for UFP in an office, the spatial distribution of the particles also had to be considered. In this work, the spatial distribution was predicted on a case by case basis, using CFD simulation.
Resumo:
The human health effects following exposure to ultrafine (<100nm) particles (UFPs) produced by fuel combustion, while not completely understood, are generally regarded as detrimental. Road tunnels have emerged as locations where maximum exposure to these particles may occur for the vehicle occupants using them. This study aimed to quantify and investigate the determinants of UFP concentrations in the 4km twin-bore (eastbound and westbound) M5 East tunnel in Sydney, Australia. Sampling was undertaken using a condensation particle counter (CPC) mounted in a vehicle traversing both tunnel bores at various times of day from May through July, 2006. Supplementary measurements were conducted in February, 2008. Over three hundred transects of the tunnel were performed, and these were distributed evenly between the bores. Additional comparative measurements were conducted on a mixed route comprising major roads and shorter tunnels, all within Sydney. Individual trip average UFP concentrations in the M5 East tunnel bores ranged from 5.53 × 104 p cm-3 to 5.95 × 106 p cm-3. Data were sorted by hour of capture, and hourly median trip average (HMA) UFP concentrations ranged from 7.81 × 104 p cm-3 to 1.73 × 106 p cm-3. Hourly median UFP concentrations measured on the mixed route were between 3.71 × 104 p cm-3 and 1.55 × 105 p cm-3. Hourly heavy diesel vehicle (HDV) traffic volume was a very good determinant of UFP concentration in the eastbound tunnel bore (R2 = 0.87), but much less so in the westbound bore (R2 = 0.26). In both bores, the volume of passenger vehicles (i.e. unleaded gasoline-powered vehicles) was a significantly poorer determinant of particle concentration. When compared with similar studies reported previously, the measurements described here were among the highest recorded concentrations, which further highlights the contribution road tunnels may make to the overall UFP exposure of vehicle occupants.
Resumo:
The effects of particulate matter on environment and public health have been widely studied in recent years. A number of studies in the medical field have tried to identify the specific effect on human health of particulate exposure, but agreement amongst these studies on the relative importance of the particles’ size and its origin with respect to health effects is still lacking. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. Current air quality standards only regulate the mass of particulate matter less than 10 μm in aerodynamic diameter (PM10) and less than 2.5 μm (PM2.5). The most reliable method used in measuring Total Suspended Particles (TSP), PM10, PM2.5 and PM1 is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique however, neglects the possibility to correlate short term intra-day variations of atmospheric parameters that can influence ambient particle concentration and size distribution (emission strengths of particle sources, temperature, relative humidity, wind direction and speed and mixing height) as well as human activity patterns that may also vary over time periods considerably shorter than 24 hours. A continuous method to measure the number size distribution and total number concentration in the range 0.014 – 20 μm is the tandem system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this paper, an uncertainty budget model of the measurement of airborne particle number, surface area and mass size distributions is proposed and applied for several typical aerosol size distributions. The estimation of such an uncertainty budget presents several difficulties due to i) the complexity of the measurement chain, ii) the fact that SMPS and APS can properly guarantee the traceability to the International System of Measurements only in terms of number concentration. In fact, the surface area and mass concentration must be estimated on the basis of separately determined average density and particle morphology. Keywords: SMPS-APS tandem system, gravimetric reference method, uncertainty budget, ultrafine particles.
Resumo:
Particle emissions, volatility, and the concentration of reactive oxygen species (ROS) were investigated for a pre-Euro I compression ignition engine to study the potential health impacts of employing ethanol fumigation technology. Engine testing was performed in two separate experimental campaigns with most testing performed at intermediate speed with four different load settings and various ethanol substitutions. A scanning mobility particle sizer (SMPS) was used to determine particle size distributions, a volatilization tandem differential mobility analyzer (V-TDMA) was used to explore particle volatility, and a new profluorescent nitroxide probe, BPEAnit, was used to investigate the potential toxicity of particles. The greatest particulate mass reduction was achieved with ethanol fumigation at full load, which contributed to the formation of a nucleation mode. Ethanol fumigation increased the volatility of particles by coating the particles with organic material or by making extra organic material available as an external mixture. In addition, the particle-related ROS concentrations increased with ethanol fumigation and were associated with the formation of a nucleation mode. The smaller particles, the increased volatility, and the increase in potential particle toxicity with ethanol fumigation may provide a substantial barrier for the uptake of fumigation technology using ethanol as a supplementary fuel.
Resumo:
We alternately measured on-road and in-vehicle ultrafine (<100 nm) particle (UFP) concentration for 5 passenger vehicles that comprised an age range of 18 years. A range of cabin ventilation settings were assessed during 301 trips through a 4 km road tunnel in Sydney, Australia. Outdoor airflow(ventilation) rates under these settings were quantified on open roads using tracer gas techniques. Significant variability in tunnel trip average median in-cabin/on-road (I/O) UFP ratios was observed (0.08 to ∼1.0). Based on data spanning all test automobiles and ventilation settings, a positive linear relationship was found between outdoor air flow rate and I/O ratio, with the former accounting for a substantial proportion of variation in the latter (R2 ) 0.81). UFP concentrations recorded in cabin during tunnel travel were significantly higher than those reported by comparable studies performed on open roadways. A simple mathematical model afforded the ability to predict tunnel trip average in-cabin UFP concentrations with good accuracy. Our data indicate that under certain conditions, in-cabin UFP exposures incurred during tunnel travel may contribute significantly to daily exposure. The UFP exposure of automobile occupants appears strongly related to their choice of ventilation setting and vehicle.
Resumo:
Background, Aim and Scope The impact of air pollution on school children’s health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. Materials and methods In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM2.5), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. Results For outdoor PN and PM2.5, early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM2.5 and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM2.5 level was mainly affected by the outdoor PM2.5 (r = 0.68, p<0.01), whereas the indoor PN concentration had some association with outdoor PN values (r = 0.66, p<0.01) even though the indoor PN concentration was occasionally influenced by indoor sources, such as cooking, cleaning and floor polishing activities. Correlation analysis indicated that the outdoor PM2.5 was inversely correlated with the indoor to outdoor PM2.5 ratio (I/O ratio) (r = -0.49, p<0.01), while the indoor PN had a weak correlation with the I/O ratio for PN (r = 0.34, p<0.01). Discussion and Conclusions The results showed that occupancy did not cause any major changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100 – 400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM2.5 was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. Recommendations and Perspectives The findings obtained in this study are useful for epidemiological studies to estimate the total personal exposure of children, and to develop appropriate control strategies for minimizing the adverse health effects on school children.
Resumo:
Short-term traffic flow data is characterized by rapid and dramatic fluctuations. It reflects the nature of the frequent congestion in the lane, which shows a strong nonlinear feature. Traffic state estimation based on the data gained by electronic sensors is critical for much intelligent traffic management and the traffic control. In this paper, a solution to freeway traffic estimation in Beijing is proposed using a particle filter, based on macroscopic traffic flow model, which estimates both traffic density and speed.Particle filter is a nonlinear prediction method, which has obvious advantages for traffic flows prediction. However, with the increase of sampling period, the volatility of the traffic state curve will be much dramatic. Therefore, the prediction accuracy will be affected and difficulty of forecasting is raised. In this paper, particle filter model is applied to estimate the short-term traffic flow. Numerical study is conducted based on the Beijing freeway data with the sampling period of 2 min. The relatively high accuracy of the results indicates the superiority of the proposed model.
Resumo:
A basic understanding of the relationships between rainfall intensity, duration of rainfall and the amount of suspended particles in stormwater runoff generated from road surfaces has been gained mainly from past washoff experiments using rainfall simulators. Simulated rainfall was generally applied at constant intensities, whereas rainfall temporal patterns during actual storms are typically highly variable. This paper discusses a rationale for the application of the constant-intensity washoff concepts to actual storm event runoff. The rationale is tested using suspended particle load data collected at a road site located in Toowoomba, Australia. Agreement between the washoff concepts and measured data is most consistent for intermediate-duration storms (duration <5 h and >1 h). Particle loads resulting from these storm events increase linearly with average rainfall intensity. Above a threshold intensity, there is evidence to suggest a constant or plateau particle load is reached. The inclusion of a peak discharge factor (maximum 6 min rainfall intensity) enhances the ability to predict particle loads.
Resumo:
Particles emitted by vehicles are known to cause detrimental health effects, with their size and oxidative potential among the main factors responsible. Therefore, understanding the relationship between traffic composition and both the physical characteristics and oxidative potential of particles is critical. To contribute to the limited knowledge base in this area, we investigated this relationship in a 4.5 km road tunnel in Brisbane, Australia. On-road concentrations of ultrafine particles (<100 nm, UFPs), fine particles (PM2.5), CO, CO2 and particle associated reactive oxygen species (ROS) were measured using vehicle-based mobile sampling. UFPs were measured using a condensation particle counter and PM2.5 with a DustTrak aerosol photometer. A new profluorescent nitroxide probe, BPEAnit, was used to determine ROS levels. Comparative measurements were also performed on an above-ground road to assess the role of emission dilution on the parameters measured. The profile of UFP and PM2.5 concentration with distance through the tunnel was determined, and demonstrated relationships with both road gradient and tunnel ventilation. ROS levels in the tunnel were found to be high compared to an open road with similar traffic characteristics, which was attributed to the substantial difference in estimated emission dilution ratios on the two roadways. Principal component analysis (PCA) revealed that the levels of pollutants and ROS were generally better correlated with total traffic count, rather than the traffic composition (i.e. diesel and gasoline-powered vehicles). A possible reason for the lack of correlation with HDV, which has previously been shown to be strongly associated with UFPs especially, was the low absolute numbers encountered during the sampling. This may have made their contribution to in-tunnel pollution largely indistinguishable from the total vehicle volume. For ROS, the stronger association observed with HDV and gasoline vehicles when combined (total traffic count) compared to when considered individually may signal a role for the interaction of their emissions as a determinant of on-road ROS in this pilot study. If further validated, this should not be overlooked in studies of on- or near-road particle exposure and its potential health effects.
Resumo:
The aim of this study was to characterise the new particle formation events in a subtropical urban environment in the southern hemisphere. The study measured the number concentration of particles and its size distribution in Brisbane, Australia during 2009. The variation of particle number concentration and nucleation burst events were characterised as well as the particle growth rate which was first reported in urban environment of Australia. The annual average NUFP, NAitken and NNuc were 9.3 x 103, 3.7 x 103 and 5.6 x 103 cm-3, respectively. Weak seasonal variation in number concentration was observed. Local traffic exhaust emissions were a major contributor of the pollution (NUFP) observed in morning which was dominated by the Aitken mode particles, while particles formed by secondary formation processes contributed to the particle number concentration during afternoon. Overall, 65 nucleation burst events were identified during the study period. Nucleation burst events were classified into two groups, with and without particles growth after the burst of nucleation mode particles observed. The average particle growth rate of the nucleation events was 4.6 nm hr-1 (ranged from 1.79 – 7.78 nm hr-1). Case studies of the nucleation burst events were characterised including i) the nucleation burst with particle growth which is associated with the particle precursor emitted from local traffic exhaust emission, ii) the nucleation burst without particle growth which is due to the transport of industrial emissions from the coast to Brisbane city or other possible sources with unfavourable conditions which suppressed particle growth and iii) interplay between the above two cases which demonstrated the impact of the vehicle and industrial emissions on the variation of particle number concentration and its size distribution during the same day.
Resumo:
Exposures to traffic-related air pollution (TRAP) can be particularly high in transport microenvironments (i.e. in and around vehicles) despite the short durations typically spent there. There is a mounting body of evidence that suggests that this is especially true for fine (b2.5 μm) and ultrafine (b100 nm, UF) particles. Professional drivers, who spend extended periods of time in transport microenvironments due to their job, may incur exposures markedly higher than already elevated non-occupational exposures. Numerous epidemiological studies have shown a raised incidence of adverse health outcomes among professional drivers, and exposure to TRAP has been suggested as one of the possible causal factors. Despite this, data describing the range and determinants of occupational exposures to fine and UF particles are largely conspicuous in their absence. Such information could strengthen attempts to define the aetiology of professional drivers' illnesses as it relates to traffic combustion-derived particles. In this article, we suggest that the drivers' occupational fine and UF particle exposures are an exemplar case where opportunities exist to better link exposure science and epidemiology in addressing questions of causality. The nature of the hazard is first introduced, followed by an overview of the health effects attributable to exposures typical of transport microenvironments. Basic determinants of exposure and reduction strategies are also described, and finally the state of knowledge is briefly summarised along with an outline of the main unanswered questions in the topic area.
Resumo:
Potential adverse effects on children health may result from school exposure to airborne particles. To address this issue, measurements in terms of particle number concentration, particle size distribution and black carbon (BC) concentrations were performed in three school buildings in Cassino (Italy) and its suburbs, outside and inside of the classrooms during normal occupancy and use. Additional time resolved information was gathered on ventilation condition, classroom activity, and traffic count data around the schools were obtained using a video camera. Across the three investigated school buildings, the outdoor and indoor particle number concentration monitored down to 4 nm and up to 3 m ranged from 2.8×104 part cm-3 to 4.7×104 part cm-3 and from 2.0×104 part cm-3 to 3.5×104 part cm-3, respectively. The total particle concentrations were usually higher outdoors than indoors, because no indoor sources were detected. I/O measured was less than 1 (varying in a relatively narrow range from 0.63 to 0.74), however one school exhibited indoor concentrations higher than outdoor during the morning rush hours. Particle size distribution at the outdoor site showed high particle concentrations in different size ranges, varying during the day; in relation to the starting and finishing of school time two modes were found. BC concentrations were 5 times higher at the urban school compared with the suburban and suburban-to-urban differences were larger than the relative differences of ultrafine particle concentrations.
Resumo:
Motor vehicle emissions have been identified as one of the major contributors of fine and ultrafine particles (UFP) in urban areas. Schools located near major roads could potentially be exposed to high levels of UPFs and school classroom is an important microenvironment where significant exposure to UFPs is likely to occur. Most of the research conducted to date has investigated the relationship between indoor and outdoor particle number concentration (PNC) in schools based on one outdoor location, which may introduce a level of error when calculating the variation of total UPFs, and can result in the underestimation or overestimation of indoor to outdoor (I/O) ratio values.
Resumo:
Many Brisbane houses were affected by water inundation as a result of the flooding event which occurred in January 2011. The combination of waterlogged materials and large amounts of silt and organic debris in affected homes gave rise to a situation where exposures to airborne particles could potentially be elevated. However, swift action to remove wet materials and dry out the building structures can help to reduce moisture and humidity in flooded houses, in an effort to prevent the growth of bacteria and mould and improve indoor air quality in and around flooded areas. To test this hypothesis, field measurements were carried out during 21 March and 3 May, 2011.