75 resultados para human immunodeficiency virus type 1
em Queensland University of Technology - ePrints Archive
Resumo:
Early HIV-1 reverse transcription can be separated into initiation and elongation phases. Here we show, using PCR analysis of negative-strand strong-stop DNA [(−)ssDNA] synthesis in intact virus, that different reverse transcriptase (RT) inhibitors affect distinct phases of early natural endogenous reverse transcription (NERT). The effects of nevirapine on NERT were consistent with a mechanism of action including both specific and nonspecific binding events. The nonspecific component of this inhibition targeted the elongation reaction, whereas the specific effect seemed principally to be directed at very early events (initiation or the initiation-elongation switch). In contrast, foscarnet and the nucleoside analog ddATP inhibited both early and late (−)ssDNA synthesis in a similar manner. We also examined compounds that targeted other viral proteins and found that Ro24-7429 (a Tat antagonist) and rosmarinic acid (an integrase inhibitor) also directly inhibited RT. Our results indicate that NERT can be used to identify and evaluate compounds that directly target the reverse transcription complex.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) subtype C is the predominant HIV in southern Africa, and is the target of a number of recent vaccine candidates. It has been proposed that a heterologous prime/boost vaccination strategy may result in stronger, broader and more prolonged immune responses. Since HIV-1 Gag Pr55 polyprotein can assemble into virus-like particles (VLPs) which have been shown to induce a strong cellular immune response in animals, we showed that a typical southern African subtype C Pr55 protein expressed in insect cells via recombinant baculovirus could form VLPs. We then used the baculovirus-produced VLPs as a boost to a subtype C HIV-1 gag DNA prime vaccination in mice. This study shows that a low dose of HIV-1 subtype C Gag VLPs can significantly boost the immune response to a single subtype C gag DNA inoculation in mice. These results suggest a possible vaccination regimen for humans. © 2004 SGM.
Resumo:
In Pediatric AIDS Clinical Trials Group 377, antiretroviral therapy-experienced children were randomized to 4 treatment arms that included different combinations of stavudine, lamivudine (3TC), nevirapine (Nvp), nelfinavir (Nfv), and ritonavir (Rtv). Previous treatment with zidovudine (Zdv), didanosine (ddI), or zalcitabine (ddC) was acceptable. Drug resistance ((R)) mutations were assessed before study treatment (baseline) and at virologic failure. Zdv(R), ddI(R), and ddC(R) mutations were detected frequently at baseline but were not associated with virologic failure. Children with drug resistance mutations at baseline had greater reductions in virus load over time than did children who did not. Nvp(R) and 3TC(R) mutations were detected frequently at virologic failure, and Nvp(R) mutations were more common among children receiving 3-drug versus 4-drug Nvp-containing regimens. Children who were maintained on their study regimen after virologic failure accumulated additional Nvp(R) and 3TC(R) mutations plus Rtv(R) and Nfv(R) mutations. However, Rtv(R) and Nfv(R) mutations were detected at unexpectedly low rates.
Resumo:
Background. One of the promising avenues for development of vaccines against Human immunodeficiency virus type 1 (HIV-1) and other human pathogens is the use of plasmid-based DNA vaccines. However, relatively large doses of plasmid must be injected for a relatively weak response. We investigated whether genome elements from Porcine circovirus type 1 (PCV-1), an apathogenic small ssDNA-containing virus, had useful expression-enhancing properties that could allow dose-sparing in a plasmid vaccine. Results. The linearised PCV-1 genome inserted 5' of the CMV promoter in the well-characterised HIV-1 plasmid vaccine pTHgrttnC increased expression of the polyantigen up to 2-fold, and elicited 3-fold higher CTL responses in mice at 10-fold lower doses than unmodified pTHgrttnC. The PCV-1 capsid gene promoter (Pcap) alone was equally effective. Enhancing activity was traced to a putative composite host transcription factor binding site and a "Conserved Late Element" transcription-enhancing sequence previously unidentified in circoviruses. Conclusions. We identified a novel PCV-1 genome-derived enhancer sequence that significantly increased antigen expression from plasmids in in vitro assays, and improved immunogenicity in mice of the HIV-1 subtype C vaccine plasmid, pTHgrttnC. This should allow significant dose sparing of, or increased responses to, this and other plasmid-based vaccines. We also report investigations of the potential of other circovirus-derived sequences to be similarly used. © 2011 Tanzer et al; licensee BioMed Central Ltd.
Resumo:
A DNA vaccine expressing human immunodeficiency virus type 1 (HIV-1) southern African subtype C Gag (pTHGag) and a recombinant baculovirus Pr55gag virus-like particle prepared using a subtype C Pr55gag protein (Gag VLP) was tested in a prime-boost inoculation regimen in Chacma baboons. The response of five baboons to Gag peptides in a gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay after three pTHGag immunizations ranged from 100 to 515 spot-forming units (s.f.u.) per 106 peripheral blood mononuclear cells (PBMCs), whilst the response of two baboons to the Gag VLP vaccine ranged from 415 to 465 s.f.u. per 106 PBMCs. An increase in the Gag-specific response to a range of 775-3583 s.f.u. per 106 PBMCs was achieved by boosting with Gag VLPs the five baboons that were primed with pTHGag. No improvement in Gag responses was achieved in this prime-boost inoculation regimen by increasing the number of pTHGag inoculations to six. IFN-γ responses were mapped to several peptides, some of which have been reported to be targeted by PBMCs from HIV-1 subtype C-infected individuals. Gag VLPs, given as a single-modality regimen, induced a predominantly CD8+ T-cell IFN-γ response and interleukin-2 was a major cytokine within a mix of predominantly Th1 cytokines produced by a DNA-VLP prime-boost modality. The prime-boost inoculation regimen induced high serum p24 antibody titres in all baboons, which were several fold above that induced by the individual vaccines. Overall, this study demonstrated that these DNA prime/VLP boost vaccine regimens are highly immunogenic in baboons, inducing high-magnitude and broad multifunctional responses, providing support for the development of these products for clinical trials. © 2008 SGM.
Resumo:
Objective. To assess medical and nursing students’ knowledge, attitudes, and practices (KAP) regarding human immunodeficiency virus (HIV) in Fiji. Methods. A cross-sectional study of 275 medical and 252 nursing students that participated in a questionnaire survey on HIV KAP. Data was analysed according to their gender, program of study, and academic year. Results. The mean HIV knowledge (HK) and attitude scores were 16.0 and 41.3, respectively. Mean HK score was significantly higher in males compared to females. Significant positive correlations were found between HK and academic year for medical () and nursing () students and between HK and attitude scores (). The majority of students indicated fear in contracting HIV through clinical practice and felt that health care workers have the right to know a patients HIV status for their own safety. The majority would wear gloves to touch a patient if suspected of HIV. Conclusions. The study found a high level of HIV knowledge and positive attitude towards HIV patients. However, respondents also displayed negative attitudes and unacceptable practices probably due to fear. Training institutions need to ensure that students gain accurate knowledge on HIV especially on transmission routes to allay the fear of caring for HIV-infected patients.
Resumo:
Since 2000-2001, dengue virus type 1 has circulated in the Pacific region. However, in 2007, type 4 reemerged and has almost completely displaced the strains of type 1. If only 1 serotype circulates at any time and is replaced approximately every 5 years, DENV-3 may reappear in 2012.
Resumo:
Background Human immunodeficiency virus type 1 (HIV-1) has infected more than 40 million people worldwide, mainly in sub-Saharan Africa. The high prevalence of HIV-1 subtype C in southern Africa necessitates the development of cheap, effective vaccines. One means of production is the use of plants, for which a number of different techniques have been successfully developed. HIV-1 Pr55Gag is a promising HIV-1 vaccine candidate: we compared the expression of this and a truncated Gag (p17/p24) and the p24 capsid subunit in Nicotiana spp. using transgenic plants and transient expression via Agrobacterium tumefaciens and recombinant tobamovirus vectors. We also investigated the influence of subcellular localisation of recombinant protein to the chloroplast and the endoplasmic reticulum (ER) on protein yield. We partially purified a selected vaccine candidate and tested its stimulation of a humoral and cellular immune response in mice. Results Both transient and transgenic expression of the HIV antigens were successful, although expression of Pr55Gag was low in all systems; however, the Agrobacterium-mediated transient expression of p24 and p17/p24 yielded best, to more than 1 mg p24/kg fresh weight. Chloroplast targeted protein levels were highest in transient and transgenic expression of p24 and p17/p24. The transiently-expressed p17/p24 was not immunogenic in mice as a homologous vaccine, but it significantly boosted a humoral and T cell immune response primed by a gag DNA vaccine, pTHGagC. Conclusion Transient agroinfiltration was best for expression of all of the recombinant proteins tested, and p24 and p17/p24 were expressed at much higher levels than Pr55Gag. Our results highlight the usefulness of plastid signal peptides in enhancing the production of recombinant proteins meant for use as vaccines. The p17/p24 protein effectively boosted T cell and humoral responses in mice primed by the DNA vaccine pTHGagC, showing that this plant-produced protein has potential for use as a vaccine.
Resumo:
Background Insect baculovirus-produced Human immunodeficiency virus type 1 (HIV-1) Gag virus-like-particles (VLPs) stimulate good humoral and cell-mediated immune responses in animals and are thought to be suitable as a vaccine candidate. Drawbacks to this production system include contamination of VLP preparations with baculovirus and the necessity for routine maintenance of infectious baculovirus stock. We used piggyBac transposition as a novel method to create transgenic insect cell lines for continuous VLP production as an alternative to the baculovirus system. Results Transgenic cell lines maintained stable gag transgene integration and expression up to 100 cell passages, and although the level of VLPs produced was low compared to baculovirus-produced VLPs, they appeared similar in size and morphology to baculovirus-expressed VLPs. In a murine immunogenicity study, whereas baculovirus-produced VLPs elicited good CD4 immune responses in mice when used to boost a prime with a DNA vaccine, no boost response was elicited by transgenically produced VLPs. Conclusion Transgenic insect cells are stable and can produce HIV Pr55 Gag VLPs for over 100 passages: this novel result may simplify strategies aimed at making protein subunit vaccines for HIV. Immunogenicity of the Gag VLPs in mice was less than that of baculovirus-produced VLPs, which may be due to lack of baculovirus glycoprotein incorporation in the transgenic cell VLPs. Improved yield and immunogenicity of transgenic cell-produced VLPs may be achieved with the addition of further genetic elements into the piggyBac integron.
Resumo:
Background The epidemiology of dengue in the South Pacific has been characterized by transmission of a single dominant serotype for 3–5 years, with subsequent replacement by another serotype. From 2001 to 2008 only DENV-1 was reported in the Pacific. In 2008, DENV-4 emerged and quickly displaced DENV-1 in the Pacific, except in New Caledonia (NC) where DENV-1 and DENV-4 co-circulated in 2008–2009. During 2012–2013, another DENV-1 outbreak occurred in NC, the third DENV-1 outbreak in a decade. Given that dengue is a serotype-specific immunizing infection, the recurrent outbreaks of a single serotype within a 10-year period was unexpected. Findings This study aimed to inform this phenomenon by examining the phylogenetic characteristics of the DENV-1 viruses in NC and other Pacific islands between 2001 and 2013. As a result, we have demonstrated that NC experienced introductions of viruses from both the Pacific (genotype IV) and South-east Asia (genotype I). Moreover, whereas genotype IV and I were co-circulating at the beginning of 2012, we observed that from the second half of 2012, i.e. during the major DENV-1 outbreak, all analyzed viruses were genotype I suggesting that a genotype switch occurred. Conclusions Repeated outbreaks of the same dengue serotype, as observed in NC, is uncommon in the Pacific islands. Why the earlier DENV-1 outbreaks did not induce sufficient herd immunity is unclear, and likely multifactorial, but the robust vector control program may have played a role by limiting transmission and thus maintaining a large susceptible pool in the population. Keywords: Dengue; Phylogeny; Genotype; Epidemics; New Caledonia
Resumo:
Background Infection with human herpesvirus 8 (HHV-8) has been consistently linked to Kaposi's sarcoma, but its mode of transmission, association with other cancers, and interaction with the human immunodeficiency virus type 1 (HIV-1) are largely unknown. Methods Between January 1992 and December 1997, we interviewed 3591 black patients with cancer in Johannesburg and Soweto, South Africa. Blood was tested for antibodies against HIV-1 and HHV-8 in 3344 of the patients. Antibodies against HHV-8 were detected with an indirect immunofluorescence assay. The intensity of the fluorescent signal correlated well with the titers of antibodies (P<0.001). The relations among the presence of anti–HHV-8 antibodies, sociodemographic and behavioral factors, type of cancer, and the presence or absence of coexistent HIV-1 infection were examined with the use of unconditional logistic-regression models. Results Among the 3293 subjects with cancers other than Kaposi's sarcoma, the standardized seroprevalence of antibodies against HHV-8 was 32 percent, which did not differ significantly from the standardized seroprevalence among black blood donors. Among these 3293 patients, the prevalence of antibodies against HHV-8 increased with increasing age (P<0.001) and an increasing number of sexual partners (P=0.05) and decreased with increasing years of education (P=0.007); it was not strongly associated with HIV-1 infection. Anti–HHV-8 antibodies were more frequent among black than white blood donors (P<0.001). Among the 51 patients with Kaposi's sarcoma, the standardized seroprevalence of antibodies against HHV-8 was 83 percent, significantly higher than the prevalence among those without Kaposi's sarcoma (P<0.001). For 16 other specific types of cancer, including multiple myeloma (108 cases) and prostate cancer (202 cases), the variation in the standardized seroprevalence of antibodies against HHV-8 was not remarkable. At a given intensity of fluorescence of anti–HHV-8 antibodies, Kaposi's sarcoma was more frequent among HIV-1–positive patients than among those who were HIV-1–negative (P<0.001). Conclusions Among black patients with cancer in South Africa, the seroprevalence of anti–HHV-8 antibodies is high and is specifically associated with Kaposi's sarcoma, particularly at high titers.
Resumo:
Background Human papillomavirus (HPV) is the aetiological agent for cervical cancer and genital warts. Concurrent HPV and HIV infection in the South African population is high. HIV positive (+) women are often infected with multiple, rare and undetermined HPV types. Data on HPV incidence and genotype distribution are based on commercial HPV detection kits, but these kits may not detect all HPV types in HIV + women. The objectives of this study were to (i) identify the HPV types not detected by commercial genotyping kits present in a cervical specimen from an HIV positive South African woman using next generation sequencing, and (ii) determine if these types were prevalent in a cohort of HIV-infected South African women. Methods Total DNA was isolated from 109 cervical specimens from South African HIV + women. A specimen within this cohort representing a complex multiple HPV infection, with 12 HPV genotypes detected by the Roche Linear Array HPV genotyping (LA) kit, was selected for next generation sequencing analysis. All HPV types present in this cervical specimen were identified by Illumina sequencing of the extracted DNA following rolling circle amplification. The prevalence of the HPV types identified by sequencing, but not included in the Roche LA, was then determined in the 109 HIV positive South African women by type-specific PCR. Results Illumina sequencing identified a total of 16 HPV genotypes in the selected specimen, with four genotypes (HPV-30, 74, 86 and 90) not included in the commercial kit. The prevalence's of HPV-30, 74, 86 and 90 in 109 HIV positive South African women were found to be 14.6 %, 12.8 %, 4.6 % and 8.3 % respectively. Conclusions Our results indicate that there are HPV types, with substantial prevalence, in HIV positive women not being detected in molecular epidemiology studies using commercial kits. The significance of these types in relation to cervical disease remains to be investigated.