30 resultados para homoclinic bifurcation

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear stability analysis introduced by Chen and Haughton [1] is employed to study the full nonlinear stability of the non-homogeneous spherically symmetric deformation of an elastic thick-walled sphere. The shell is composed of an arbitrary homogeneous, incompressible elastic material. The stability criterion ultimately requires the solution of a third-order nonlinear ordinary differential equation. Numerical calculations performed for a wide variety of well-known incompressible materials are then compared with existing bifurcation results and are found to be identical. Further analysis and comparison between stability and bifurcation are conducted for the case of thin shells and we prove by direct calculation that the two criteria are identical for all modes and all materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular disease is the leading causes of death in the developed world. Wall shear stress (WSS) is associated with the initiation and progression of atherogenesis. This study combined the recent advances in MR imaging and computational fluid dynamics (CFD) and evaluated the patient-specific carotid bifurcation. The patient was followed up for 3 years. The geometry changes (tortuosity, curvature, ICA/CCA area ratios, central to the cross-sectional curvature, maximum stenosis) and the CFD factors (Velocity distribute, Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI)) were compared at different time points.The carotid stenosis was a slight increase in the central to the cross-sectional curvature, and it was minor and variable curvature changes for carotid centerline. The OSI distribution presents ahigh-values in the same region where carotid stenosis and normal border, indicating complex flow and recirculation.The significant geometric changes observed during the follow-up may also cause significant changes in bifurcation hemodynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the commonly used switching schemes for sliding mode control of power converters is analyzed and designed in the frequency domain. Particular application of a distribution static compensator (DSTATCOM) in voltage control mode is investigated in a power distribution system. Tsypkin's method and describing function is used to obtain the switching conditions for the two-level and three-level voltage source inverters. Magnitude conditions of carrier signals are developed for robust switching of the inverter under carrier-based modulation scheme of sliding mode control. The existence of border collision bifurcation is identified to avoid the complex switching states of the inverter. The load bus voltage of an unbalanced three-phase nonstiff radial distribution system is controlled using the proposed carrier-based design. The results are validated using PSCAD/EMTDC simulation studies and through a scaled laboratory model of DSTATCOM that is developed for experimental verification

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the stability analysis for a distribution static compensator (DSTATCOM) that operates in current control mode based on bifurcation theory. Bifurcations delimit the operating zones of nonlinear circuits and, hence, the capability to compute these bifurcations is of important interest for practical design. A control design for the DSTATCOM is proposed. Along with this control, a suitable mathematical representation of the DSTATCOM is proposed to carry out the bifurcation analysis efficiently. The stability regions in the Thevenin equivalent plane are computed for different power factors at the point of common coupling. In addition, the stability regions in the control gain space, as well as the contour lines for different Floquet multipliers are computed. It is demonstrated through bifurcation analysis that the loss of stability in the DSTATCOM is due to the emergence of a Neimark bifurcation. The observations are verified through simulation studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article deals with the non-linear oscillations assessment of a distribution static comensator ooperating in voltage control mode using the bifurcation theory. A mathematical model of the distribution static compensator in the voltage control mode to carry out the bifurcation analysis is derived. The stabiity regions in the Thevein equivalent plane are computed. In addition, the stability regions in the control gains space, as well as the contour lines for different Floquet multipliers are computed. The AC and DC capacitor impacts on the stability are analyzed through the bifurcation theory. The observations are verified through simulaation studies. The computation of the stability region allows the assessment of the stable operating zones for a power system that includes a distribution static compensator operating in the voltage mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this contribution, a stability analysis for a dynamic voltage restorer (DVR) connected to a weak ac system containing a dynamic load is presented using continuation techniques and bifurcation theory. The system dynamics are explored through the continuation of periodic solutions of the associated dynamic equations. The switching process in the DVR converter is taken into account to trace the stability regions through a suitable mathematical representation of the DVR converter. The stability regions in the Thevenin equivalent plane are computed. In addition, the stability regions in the control gains space, as well as the contour lines for different Floquet multipliers, are computed. Besides, the DVR converter model employed in this contribution avoids the necessity of developing very complicated iterative map approaches as in the conventional bifurcation analysis of converters. The continuation method and the DVR model can take into account dynamics and nonlinear loads and any network topology since the analysis is carried out directly from the state space equations. The bifurcation approach is shown to be both computationally efficient and robust, since it eliminates the need for numerically critical and long-lasting transient simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heat transfer through the attics of buildings under realistic thermal forcing has been considered in this study. A periodic temperature boundary condition is applied on the sloping walls of the attic to show the basic flow features in the attic space over diurnal cycles. The numerical results reveal that, during the daytime heating stage, the flow in the attic space is stratified; whereas at the night-time cooling stage, the flow becomes unstable. A symmetrical solution is seen for relatively low Rayleigh numbers. However, as the Ra gradually increases, a transition occurs at a critical value of Ra. Above this critical value, an asymmetrical solution exhibiting a pitchfork bifurcation arises at the night-time. It is also found that the calculated heat transfer rate at the night-time cooling stage is much higher than that during the daytime heating stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Higher-order spectral (bispectral and trispectral) analyses of numerical solutions of the Duffing equation with a cubic stiffness are used to isolate the coupling between the triads and quartets, respectively, of nonlinearly interacting Fourier components of the system. The Duffing oscillator follows a period-doubling intermittency catastrophic route to chaos. For period-doubled limit cycles, higher-order spectra indicate that both quadratic and cubic nonlinear interactions are important to the dynamics. However, when the Duffing oscillator becomes chaotic, global behavior of the cubic nonlinearity becomes dominant and quadratic nonlinear interactions are weak, while cubic interactions remain strong. As the nonlinearity of the system is increased, the number of excited Fourier components increases, eventually leading to broad-band power spectra for chaos. The corresponding higher-order spectra indicate that although some individual nonlinear interactions weaken as nonlinearity increases, the number of nonlinearly interacting Fourier modes increases. Trispectra indicate that the cubic interactions gradually evolve from encompassing a few quartets of Fourier components for period-1 motion to encompassing many quartets for chaos. For chaos, all the components within the energetic part of the power spectrum are cubically (but not quadratically) coupled to each other.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polynomial models are shown to simulate accurately the quadratic and cubic nonlinear interactions (e.g. higher-order spectra) of time series of voltages measured in Chua's circuit. For circuit parameters resulting in a spiral attractor, bispectra and trispectra of the polynomial model are similar to those from the measured time series, suggesting that the individual interactions between triads and quartets of Fourier components that govern the process dynamics are modeled accurately. For parameters that produce the double-scroll attractor, both measured and modeled time series have small bispectra, but nonzero trispectra, consistent with higher-than-second order nonlinearities dominating the chaos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, numerical simulations of natural convection in an attic space subject to diurnal temperature condition on the sloping wall have been carried out. An explanation of choosing the period of periodic thermal effect has been given with help of the scaling analysis which is available in the literature. Moreover, the effects of the aspect ratio and Rayleigh number on the fluid flow and heat transfer have been discussed in details as well as the formation of a pitchfork bifurcation of the flow at the symmetric line of the enclosure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents a detailed analysis on the collective dynamics and delayed state feedback control of a three-dimensional delayed small-world network. The trivial equilibrium of the model is first investigated, showing that the uncontrolled model exhibits complicated unbounded behavior. Then three control strategies, namely a position feedback control, a velocity feedback control, and a hybrid control combined velocity with acceleration feedback, are then introduced to stabilize this unstable system. It is shown in these three control schemes that only the hybrid control can easily stabilize the 3-D network system. And with properly chosen delay and gain in the delayed feedback path, the hybrid controlled model may have stable equilibrium, or periodic solutions resulting from the Hopf bifurcation, or complex stranger attractor from the period-doubling bifurcation. Moreover, the direction of Hopf bifurcation and stability of the bifurcation periodic solutions are analyzed. The results are further extended to any "d" dimensional network. It shows that to stabilize a "d" dimensional delayed small-world network, at least a "d – 1" order completed differential feedback is needed. This work provides a constructive suggestion for the high dimensional delayed systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we analyze the three-component reaction-diffusion system originally developed by Schenk et al. (PRL 78:3781–3784, 1997). The system consists of bistable activator-inhibitor equations with an additional inhibitor that diffuses more rapidly than the standard inhibitor (or recovery variable). It has been used by several authors as a prototype three-component system that generates rich pulse dynamics and interactions, and this richness is the main motivation for the analysis we present. We demonstrate the existence of stationary one-pulse and two-pulse solutions, and travelling one-pulse solutions, on the real line, and we determine the parameter regimes in which they exist. Also, for one-pulse solutions, we analyze various bifurcations, including the saddle-node bifurcation in which they are created, as well as the bifurcation from a stationary to a travelling pulse, which we show can be either subcritical or supercritical. For two-pulse solutions, we show that the third component is essential, since the reduced bistable two-component system does not support them. We also analyze the saddle-node bifurcation in which two-pulse solutions are created. The analytical method used to construct all of these pulse solutions is geometric singular perturbation theory, which allows us to show that these solutions lie in the transverse intersections of invariant manifolds in the phase space of the associated six-dimensional travelling wave system. Finally, as we illustrate with numerical simulations, these solutions form the backbone of the rich pulse dynamics this system exhibits, including pulse replication, pulse annihilation, breathing pulses, and pulse scattering, among others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We perform an analytic and numerical study of an inviscid contracting bubble in a two-dimensional Hele-Shaw cell, where the effects of both surface tension and kinetic undercooling on the moving bubble boundary are not neglected. In contrast to expanding bubbles, in which both boundary effects regularise the ill-posedness arising from the viscous (Saffman-Taylor) instability, we show that in contracting bubbles the two boundary effects are in competition, with surface tension stabilising the boundary, and kinetic undercooling destabilising it. This competition leads to interesting bifurcation behaviour in the asymptotic shape of the bubble in the limit it approaches extinction. In this limit, the boundary may tend to become either circular, or approach a line or "slit" of zero thickness, depending on the initial condition and the value of a nondimensional surface tension parameter. We show that over a critical range of surface tension values, both these asymptotic shapes are stable. In this regime there exists a third, unstable branch of limiting self-similar bubble shapes, with an asymptotic aspect ratio (dependent on the surface tension) between zero and one. We support our asymptotic analysis with a numerical scheme that utilises the applicability of complex variable theory to Hele-Shaw flow.