83 resultados para high-temperature superconductivity
em Queensland University of Technology - ePrints Archive
Resumo:
The thermal decomposition and dehydroxylation process of coal-bearing strata kaolinite–potassium acetate intercalation complex (CSKK) has been studied using X-ray diffraction (XRD), infrared spectroscopy (IR), thermal analysis, mass spectrometric analysis and infrared emission spectroscopy. The XRD results showed that the potassium acetate (KAc) have been successfully intercalated into coal-bearing strata kaolinite with an obvious basal distance increase of the first basal peak, and the positive correlation was found between the concentration of intercalation regent KAc and the degree of intercalation. As the temperature of the system is raised, the formation of KHCO3, KCO3 and KAlSiO4, which is derived from the thermal decomposition or phase transition of CSKK, is observed in sequence. The IR results showed that new bands appeared, the position and intensities shift can also be found when the concentration of intercalation agent is raised. The thermal analysis and mass spectrometric analysis results revealed that CSKK is stable below 300 °C, and the thermal decomposition products (H2O and CO2) were further proved by the mass spectrometric analysis. A comparison of thermal analysis results of original coal-bearing strata kaolinite and its intercalation complex gives new discovery that not only a new mass loss peak is observed at 285 °C, but also the temperature of dehydroxylation and dehydration of coal bearing strata kaolinite is decreased about 100 °C. This is explained on the basis of the interlayer space of the kaolinite increased obviously after being intercalated by KAc, which led to the interlayer hydrogen bonds weakened, enables the dehydroxylation from kaolinite surface more easily. Furthermore, the possible structural model for CSKK has been proposed, with further analysis required in order to prove the most possible structures.
Resumo:
Series reactors are used in distribution grids to reduce the short-circuit fault level. Some of the disadvantages of the application of these devices are the voltage drop produced across the reactor and the steep front rise of the transient recovery voltage (TRV), which generally exceeds the rating of the associated circuit breaker. Simulations were performed to compare the characteristics of a saturated core High-Temperature Superconducting Fault Current Limiter (HTS FCL) and a series reactor. The design of the HTS FCL was optimized using the evolutionary algorithm. The resulting Pareto frontier curve of optimum solution is presented in this paper. The results show that the steady-state impedance of an HTS FCL is significantly lower than that of a series reactor for the same level of fault current limiting. Tests performed on a prototype 11 kV HTS FCL confirm the theoretical results. The respective transient recovery voltages (TRV) of the HTS FCL and an air core reactor of comparable fault current limiting capability are also determined. The results show that the saturated core HTS FCL has a significantly lower effect on the rate of rise of the circuit breaker TRV as compared to the air core reactor. The simulations results are validated with shortcircuit test results.
High-sensitivity fiber Bragg grating temperature sensor at high temperature [一种高温下高灵敏光纤光栅温度传感器的制作方法]
Resumo:
A method of making full use of the durable strain which fiber Bragg grating (FBG) can undertake is presented, which hugely improves the sensitivities of FBG temperature sensors at high temperature. When a sensor is manufactured at room temperature, its FBG should be given a pre-relaxing length according to the temperature it is asked to measure; once the temperature rise to the asked one, its FBG starts to be stretched and it starts to work with high sensitivity. The relationship between the pre-relaxing length and the working temperature is analyzed. In experiments, when the pre-relaxing lengths are 0.2mm、0.5mm、0.6mm, the working temperatures rise 25℃、50℃、61℃, respectively, and the sensitivities are almost the same (675pm/℃). The facts that the experimental results agree well with the theoretical analyses verify this method’s validity.
Resumo:
Non-periodic structural variation has been found in the high Tc cuprates, YBa2Cu3O7-x and Hg0.67Pb0.33Ba2Ca2Cu 3O8+δ, by image analysis of high resolution transmission electron microscope (HRTEM) images. We use two methods for analysis of the HRTEM images. The first method is a means for measuring the bending of lattice fringes at twin planes. The second method is a low-pass filter technique which enhances information contained by diffuse-scattered electrons and reveals what appears to be an interference effect between domains of differing lattice parameter in the top and bottom of the thin foil. We believe that these methods of image analysis could be usefully applied to the many thousands of HRTEM images that have been collected by other workers in the high temperature superconductor field. This work provides direct structural evidence for phase separation in high Tc cuprates, and gives support to recent stripes models that have been proposed to explain various angle resolved photoelectron spectroscopy and nuclear magnetic resonance data. We believe that the structural variation is a response to an opening of an electronic solubility gap where holes are not uniformly distributed in the material but are confined to metallic stripes. Optimum doping may occur as a consequence of the diffuse boundaries between stripes which arise from spinodal decomposition. Theoretical ideas about the high Tc cuprates which treat the cuprates as homogeneous may need to be modified in order to take account of this type of structural variation.
Resumo:
Chemical vapor deposition (CVD) is widely utilized to synthesize graphene with controlled properties for many applications, especially when continuous films over large areas are required. Although hydrocarbons such as methane are quite efficient precursors for CVD at high temperature (∼1000 °C), finding less explosive and safer carbon sources is considered beneficial for the transition to large-scale production. In this work, we investigated the CVD growth of graphene using ethanol, which is a harmless and readily processable carbon feedstock that is expected to provide favorable kinetics. We tested a wide range of synthesis conditions (i.e., temperature, time, gas ratios), and on the basis of systematic analysis by Raman spectroscopy, we identified the optimal parameters for producing highly crystalline graphene with different numbers of layers. Our results demonstrate the importance of high temperature (1070 °C) for ethanol CVD and emphasize the significant effects that hydrogen and water vapor, coming from the thermal decomposition of ethanol, have on the crystal quality of the synthesized graphene.
Resumo:
The biosynthesis of anthocyanin in many plants is affected by environmental conditions. In apple (Malus×domestica Borkh.), concentrations of fruit anthocyanins are lower under hot climatic conditions. We examined the anthocyanin accumulation in the peel of maturing 'Mondial Gala' and 'Royal Gala' apples, grown in both temperate and hot climates, and using artificial heating of on-tree fruit. Heat caused a dramatic reduction of both peel anthocyanin concentration and transcripts of the genes of the anthocyanin biosynthetic pathway. Heating fruit rapidly reduced expression of the R2R3 MYB transcription factor (MYB10) responsible for coordinative regulation for red skin colour, as well as expression of other genes in the transcriptional activation complex. A single night of low temperatures is sufficient to elicit a large increase in transcription of MYB10 and consequently the biosynthetic pathway. Candidate genes that can repress anthocyanin biosynthesis did not appear to be responsible for reductions in anthocyanin content. We propose that temperature-induced regulation of anthocyanin biosynthesis is primarily caused by altered transcript levels of the activating anthocyanin regulatory complex.
Resumo:
A numerical growth model is used to describe the catalyzed growth of carbon nanofibers in the sheath of a low-temperature plasma. Using the model, the effects of variation in the plasma sheath parameters and substrate potential on the carbon nanofiber growth characteristics, such as the growth rate, the effective carbon flux to the catalyst surface, and surface coverages, have been investigated. It is shown that variations in the parameters, which change the sheath width, mainly affect the growth parameters at the low catalyst temperatures, whereas the other parameters such as the gas pressure, ion temperature, and percentages of the hydrocarbon and etching gases, strongly affect the carbon nanofiber growth at higher temperatures. The conditions under which the carbon nanofiber growth can still proceed under low nanodevice-friendly process temperatures have been formulated and summarized. These results are consistent with the available experimental results and can also be used for catalyzed growth of other high-aspect-ratio nanostructures in low-temperature plasmas.
Resumo:
The 12.7-10.5 Ma Cougar Point Tuff in southern Idaho, USA, consists of 10 large-volume (>10²-10³ km³ each), high-temperature (800-1000 °C), rhyolitic ash-flow tuffs erupted from the Bruneau-Jarbidge volcanic center of the Yellowstone hotspot. These tuffs provide evidence for compositional and thermal zonation in pre-eruptive rhyolite magma, and suggest the presence of a long-lived reservoir that was tapped by numerous large explosive eruptions. Pyroxene compositions exhibit discrete compositional modes with respect to Fe and Mg that define a linear spectrum punctuated by conspicuous gaps. Airfall glass compositions also cluster into modes, and the presence of multiple modes indicates tapping of different magma volumes during early phases of eruption. Equilibrium assemblages of pigeonite and augite are used to reconstruct compositional and thermal gradients in the pre-eruptive reservoir. The recurrence of identical compositional modes and of mineral pairs equilibrated at high temperatures in successive eruptive units is consistent with the persistence of their respective liquids in the magma reservoir. Recurrence intervals of identical modes range from 0.3 to 0.9 Myr and suggest possible magma residence times of similar duration. Eruption ages, magma temperatures, Nd isotopes, and pyroxene and glass compositions are consistent with a long-lived, dynamically evolving magma reservoir that was chemically and thermally zoned and composed of multiple discrete magma volumes.
Resumo:
The phase relations have been investigated experimentally at 200 and 500 MPa as a function of water activity for one of the least evolved (Indian Batt Rhyolite) and of a more evolved rhyolite composition (Cougar Point Tuff XV) from the 12·8-8·1 Ma Bruneau-Jarbidge eruptive center of the Yellowstone hotspot. Particular priority was given to accurate determination of the water content of the quenched glasses using infrared spectroscopic techniques. Comparison of the composition of natural and experimentally synthesized phases confirms that high temperatures (>900°C) and extremely low melt water contents (<1·5 wt % H₂O) are required to reproduce the natural mineral assemblages. In melts containing 0·5-1·5 wt % H₂O, the liquidus phase is clinopyroxene (excluding Fe-Ti oxides, which are strongly dependent on fO₂), and the liquidus temperature of the more evolved Cougar Point Tuff sample (BJR; 940-1000°C) is at least 30°C lower than that of the Indian Batt Rhyolite lava sample (IBR2; 970-1030°C). For the composition BJR, the comparison of the compositions of the natural and experimental glasses indicates a pre-eruptive temperature of at least 900°C. The composition of clinopyroxene and pigeonite pairs can be reproduced only for water contents below 1·5 wt % H₂O at 900°C, or lower water contents if the temperature is higher. For the composition IBR2, a minimum temperature of 920°C is necessary to reproduce the main phases at 200 and 500 MPa. At 200 MPa, the pre-eruptive water content of the melt is constrained in the range 0·7-1·3 wt % at 950°C and 0·3-1·0 wt % at 1000°C. At 500 MPa, the pre-eruptive temperatures are slightly higher (by 30-50°C) for the same ranges of water concentration. The experimental results are used to explore possible proxies to constrain the depth of magma storage. The crystallization sequence of tectosilicates is strongly dependent on pressure between 200 and 500 MPa. In addition, the normative Qtz-Ab-Or contents of glasses quenched from melts coexisting with quartz, sanidine and plagioclase depend on pressure and melt water content, assuming that the normative Qtz and Ab/Or content of such melts is mainly dependent on pressure and water activity, respectively. The combination of results from the phase equilibria and from the composition of glasses indicates that the depth of magma storage for the IBR2 and BJR compositions may be in the range 300-400 MPa (13 km) and 200-300 MPa (10 km), respectively.
Resumo:
This study examined the short-term effects of temperature on cardiovascular hospital admissions (CHA) in the largest tropical city in Southern Vietnam. We applied Poisson time-series regression models with Distributed Lag Non-Linear Model (DLNM) to examine the temperature-CHA association while adjusting for seasonal and long-term trends, day of the week, holidays, and humidity. The threshold temperature and added effects of heat waves were also evaluated. The exposure-response curve of temperature-CHA reveals a J-shape relationship with a threshold temperature of 29.6 °C. The delayed effects temperature-CHA lasted for a week (0–5 days). The overall risk of CHA increased 12.9% (RR, 1.129; 95%CI, 0.972–1.311) during heatwave events, which were defined as temperature ≥ the 99th percentile for ≥2 consecutive days. The modification roles of gender and age were inconsistent and non-significant in this study. An additional prevention program that reduces the risk of cardiovascular disease in relation to high temperatures should be developed.
Resumo:
Engineered grain boundary Josephson junctions in YBaCuO were formed on bicrystal Y-ZrO2 substrates. Laser deposited films were patterned into micron size microbridges. The authors obsd. a pronounced correlation between superconducting transport properties of grain boundary junctions and the misorientation angle θ between the two halves of the bicrystal. The crit. Josephson current Ic decreased about four orders of magnitude as θ was increased from 0 to 45 degrees. Clear microwave and magnetic field responses were obsd. at 77 K. At this temp., crit. current times normal resistance products, IcRn, of up to 1 mV were measured for low angle grain boundaries, and Shapiro steps were obsd. up to that voltage. DC SQUIDs were fabricated, and best performance at 77 K was obtained for θ = 32° with a 4-μm strip width. To utilize the higher IcRn value of a lower θ, submicron junctions have to be developed. [on SciFinder(R)]
Resumo:
Background: A number of studies have examined the relationship between high ambient temperature and mortality. Recently, concern has arisen about whether this relationship is modified by socio-demographic factors. However, data for this type of study is relatively scarce in subtropical/tropical regions where people are well accustomed to warm temperatures. Objective: To investigate whether the relationship between daily mean temperature and daily all-cause mortality is modified by age, gender and socio-economic status (SES) in Brisbane, Australia. Methods: We obtained daily mean temperature and all-cause mortality data for Brisbane, Australia during 1996–2004. A generalised additive model was fitted to assess the percentage increase in all deaths with every one degree increment above the threshold temperature. Different age, gender and SES groups were included in the model as categorical variables and their modification effects were estimated separately. Results: A total of 53,316 non-external deaths were included during the study period. There was a clear increasing trend in the harmful effect of high temperature on mortality with age. The effect estimate among women was more than 20 times that among men. We did not find an SES effect on the percent increase associated with temperature. Conclusions: The effects of high temperature on all deaths were modified by age and gender but not by SES in Brisbane, Australia.
Resumo:
The relationship between weather and mortality has been observed for centuries. Recently, studies on temperature-related mortality have become a popular topic as climate change continues. Most of the previous studies found that exposure to hot or cold temperature affects mortality. This study aims to address three research questions: 1. What is the overall effect of daily mean temperature variation on the elderly mortality in the published literature using a meta-analysis approach? 2. Does the association between temperature and mortality differ with age, sex, or socio-economic status in Brisbane? 3. How is the magnitude of the lag effects of the daily mean temperature on mortality varied by age and cause-of-death groups in Brisbane? In the meta-analysis, there was a 1-2 % increase in all-cause mortality for a 1ºC decrease during cold temperature intervals and a 2-5% increase for a 1ºC increment during hot temperature intervals among the elderly. Lags of up to 9 days in exposure to cold temperature intervals were statistically significantly associated with all-cause mortality, but no significant lag effects were observed for hot temperature intervals. In Brisbane, the harmful effect of high temperature (over 24ºC) on mortality appeared to be greater among the elderly than other age groups. The effect estimate among women was greater than among men. However, No evidence was found that socio-economic status modified the temperature-mortality relationship. The results of this research also show longer lag effects in cold days and shorter lag effects in hot days. For 3-day hot effects associated with 1°C increase above the threshold, the highest percent increases in mortality occurred among people aged 85 years or over (5.4% (95% CI: 1.4%, 9.5%)) compared with all age group (3.2% (95% CI: 0.9%, 5.6%)). The effect estimate among cardiovascular deaths was slightly higher than those among all-cause mortality. For overall 21-day cold effects associated with a 1°C decrease below the threshold, the percent estimates in mortality for people aged 85 years or over, and from cardiovascular diseases were 3.9% (95% CI: 1.9%, 6.0%) and 3.4% (95% CI: 0.9%, 6.0%), respectively compared with all age group (2.0% (95% CI: 0.7%, 3.3%)). Little research of this kind has been conducted in the Southern Hemisphere. This PhD research may contribute to the quantitative assessment of the overall impact, effect modification and lag effects of temperature variation on mortality in Australia and The findings may provide useful information for the development and implementation of public health policies to reduce and prevent temperature-related health problems.