43 resultados para high energy cosmic rays

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of metals to store or trap considerable amounts of energy, and thus exist in a non-equilibrium or metastable state, is very well known in metallurgy; however, such behaviour, which is intimately connected with the defect character of metals, has been largely ignored in noble metal surface electrochemistry. Techniques for generating unusually high energy surface states for gold, and the unusual voltammetric responses of such states, are outlined. The surprisingly high (and complex) electrocatalytic activity of gold in aqueous media is attributed to the presence of a range of such non-equilibrium states as the vital entities at active sites on conventional gold surfaces. The possible relevance of these ideas to account for the remarkable catalytic activity of oxide-supported gold microparticles is briefly outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated metabolic responses to fat and carbohydrate ingestion in lean male individuals consuming an habitual diet high or low in fat. Twelve high-fat phenotypes (HF) and twelve low-fat phenotypes (LF) participated in the study. Energy intake and macronutrient intake variables were assessed using a food frequency questionnaire. Resting (RMR) and postprandial metabolic rate and substrate oxidation (respiratory quotient; RQ) were measured by indirect calorimetry. HF had a significantly higher RMR and higher resting heart rate than LF. These variables remained higher in HF following the macronutrient challenge. In all subjects the carbohydrate load increased metabolic rate and heart rate significantly more than the fat load. Fat oxidation (indicated by a low RQ) was significantly higher in HF than in LF following the fat load; the ability to oxidise a high carbohydrate load did not differ between the groups. Lean male subjects consuming a diet high in fat were associated with increased energy expenditure at rest and a relatively higher fat oxidation in response to a high fat load; these observations may be partly responsible for maintaining energy balance on a high-fat (high-energy) diet. In contrast, a low consumer of fat is associated with relatively lower energy expenditure at rest and lower fat oxidation, which has implications for weight gain if high-fat foods or meals are periodically introduced to the diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the present worldwide epidemic of obesity, it is pertinent to ask how effective exercise could be in helping people to lose weight or to prevent weight gain. There is a widely held belief that exercise is futile for weight reduction because any energy expended in exercise is automatically compensated for by a corresponding increase in energy intake (EI). In other words, exercise elevates the intensity of hunger and drives food consumption. This “commonsense” view appears to originate in an energy-balance model of appetite control, which stipulates that energy expended will drive EI as a consequence of the regulation of energy balance. However, it is very clear that EI (food consumption or eating) is not just a biological matter. Eating does not occur solely to rectify some internal need state. Indeed, an examination of the relation between exercise and appetite control has shown a very weak coupling; most studies have demonstrated that food intake does not immediately rise after exercise, even after very high energy expenditure (EE).[1] The processes of exercise-induced EE and food consumption do not appear to be tightly linked. After exercise, there is only slow and partial compensation for the energy expended. Therefore, exercise can be very useful in helping to bring about weight loss and is even more important in preventing weight gain or weight regain. This editorial explores this issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercise is known to cause physiological changes that could affect the impact of nutrients on appetite control. This study was designed to assess the effect of drinks containing either sucrose or high-intensity sweeteners on food intake following exercise. Using a repeated-measures design, three drink conditions were employed: plain water (W), a low-energy drink sweetened with artificial sweeteners aspartame and acesulfame-K (L), and a high-energy, sucrose-sweetened drink (H). Following a period of challenging exercise (70% VO2 max for 50 min), subjects consumed freely from a particular drink before being offered a test meal at which energy and nutrient intakes were measured. The degree of pleasantness (palatability) of the drinks was also measured before and after exercise. At the test meal, energy intake following the artificially sweetened (L) drink was significantly greater than after water and the sucrose (H) drinks (p < 0.05). Compared with the artificially sweetened (L) drink, the high-energy (H) drink suppressed intake by approximately the energy contained in the drink itself. However, there was no difference between the water (W) and the sucrose (H) drink on test meal energy intake. When the net effects were compared (i.e., drink + test meal energy intake), total energy intake was significantly lower after the water (W) drink compared with the two sweet (L and H) drinks. The exercise period brought about changes in the perceived pleasantness of the water, but had no effect on either of the sweet drinks. The remarkably precise energy compensation demonstrated after the higher energy sucrose drink suggests that exercise may prime the system to respond sensitively to nutritional manipulations. The results may also have implications for the effect on short-term appetite control of different types of drinks used to quench thirst during and after exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air quality and temperatures in classrooms are important factors influencing the student learning process. To improve the thermal comfort of classrooms for Queensland State Schools, Queensland Government initiated the "Cooler Schools Program". One of the key objectives under this program was to develop low energy cooling systems as an alternative to high energy demand conventioanl split system of air conditioning (AC) systems. In order to compare and evaluate the energy performance of different types of air conditioners installed in classrooms, monitoring systems were installed in a state primary school located in the greater outer urban area of Brisbane, Australia. It was found that the installation of monitoring systems could have a significant impact on the accuracy of the data being collected. By comparing the estimated energy efficiency ratio (EER)for four qualified air conditioners included in this study, it was also found that AC6, a hybrid air conditioner newly developed by the Queensland Department of Public Works (DPW), had the best energy performance, although the current data were not able to show the full advantages of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are limited studies on the adequacy of prisoner diet and food practices, yet understanding these are important to inform food provision and assure duty of care for this group. The aim of this research was to assess the dietary intakes of prisoners to inform food and nutrition policy in this setting. This research used a cross-sectional design with convenience sampling in a 945 bed male high secure prison. Multiple methods were used to assess food available at the group level, including verification of food portion, quality, and practices. A pictorial tool supported the diet history method. Of 276 eligible prisoners, 120 dietary interviews were conducted and verified against prison records, with 106 deemed plausible. The results showed the planned food to be nutritionally adequate, with the exception of vitamin D for older males and long chain fatty acids, with sodium above Upper Limits. The Australian Dietary Targets for chronic disease risk were not achieved. High energy intakes were reported with median 13.8MJ (SE 0.3MJ). Probability estimates of inadequate intake varied with age groups: magnesium 8% (>30 years), 2.9% (<30 years); calcium 6.0% (>70 years), 1.5% (<70 years); folate 3.5%; zinc and iodine 2.7%; and vitamin A 2.3%. Nutrient intakes were greatly impacted by self-funded snacks. Results suggest nutrient intakes nutritionally favourable when compared to males in the community. This study highlights the complexity of food provision in the prison environment, and also poses questions for population level dietary guidance in delivering appropriate nutrients within energy limits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The National Energy Efficient Building Project (NEEBP) Phase One report, published in December 2014, investigated “process issues and systemic failures” in the administration of the energy performance requirements in the National Construction Code. It found that most stakeholders believed that under-compliance with these requirements is widespread across Australia, with similar issues being reported in all states and territories. The report found that many different factors were contributing to this outcome and, as a result, many recommendations were offered that together would be expected to remedy the systemic issues reported. To follow up on this Phase 1 report, three additional projects were commissioned as part of Phase 2 of the overall NEEBP project. This Report deals with the development and piloting of an Electronic Building Passport (EBP) tool – a project undertaken jointly by pitt&sherry and a team at the Queensland University of Technology (QUT) led by Dr Wendy Miller. The other Phase 2 projects cover audits of Class 1 buildings and issues relating to building alterations and additions. The passport concept aims to provide all stakeholders with (controlled) access to the key documentation and information that they need to verify the energy performance of buildings. This trial project deals with residential buildings but in principle could apply to any building type. Nine councils were recruited to help develop and test a pilot electronic building passport tool. The participation of these councils – across all states – enabled an assessment of the extent to which these councils are currently utilising documentation; to track the compliance of residential buildings with the energy performance requirements in the National Construction Code (NCC). Overall we found that none of the participating councils are currently compiling all of the energy performance-related documentation that would demonstrate code compliance. The key reasons for this include: a major lack of clarity on precisely what documentation should be collected; cost and budget pressures; low public/stakeholder demand for the documentation; and a pragmatic judgement that non-compliance with any regulated documentation requirements represents a relatively low risk for them. Some councils reported producing documentation, such as certificates of final completion, only on demand, for example. Only three of the nine council participants reported regularly conducting compliance assessments or audits utilising this documentation and/or inspections. Overall we formed the view that documentation and information tracking processes operating within the building standards and compliance system are not working to assure compliance with the Code’s energy performance requirements. In other words the Code, and its implementation under state and territory regulatory processes, is falling short as a ‘quality assurance’ system for consumers. As a result it is likely that the new housing stock is under-performing relative to policy expectations, consuming unnecessary amounts of energy, imposing unnecessarily high energy bills on occupants, and generating unnecessary greenhouse gas emissions. At the same time, Councils noted that the demand for documentation relating to building energy performance was low. All the participant councils in the EBP pilot agreed that documentation and information processes need to work more effectively if the potential regulatory and market drivers towards energy efficient homes are to be harnessed. These findings are fully consistent with the Phase 1 NEEBP report. It was also agreed that an EBP system could potentially play an important role in improving documentation and information processes. However, only one of the participant councils indicated that they might adopt such a system on a voluntary basis. The majority felt that such a system would only be taken up if it were: - A nationally agreed system, imposed as a mandatory requirement under state or national regulation; - Capable of being used by multiple parties including councils, private certifiers, building regulators, builders and energy assessors in particular; and - Fully integrated into their existing document management systems, or at least seamlessly compatible rather than a separate, unlinked tool. Further, we note that the value of an EBP in capturing statistical information relating to the energy performance of buildings would be much greater if an EBP were adopted on a nationally consistent basis. Councils were clear that a key impediment to the take up of an EBP system is that they are facing very considerable budget and staffing challenges. They report that they are often unable to meet all community demands from the resources available to them. Therefore they are unlikely to provide resources to support the roll out of an EBP system on a voluntary basis. Overall, we conclude from this pilot that the public good would be well served if the Australian, state and territory governments continued to develop and implement an Electronic Building Passport system in a cost-efficient and effective manner. This development should occur with detailed input from building regulators, the Australian Building Codes Board (ABCB), councils and private certifiers in the first instance. This report provides a suite of recommendations (Section 7.2) designed to advance the development and guide the implementation of a national EBP system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of exercise and breakfast manipulations on mood and motivation to eat were assessed in 11 healthy females who were regular exercisers and habitual breakfast eaters. The study involved a two by two repeated-measures design, with exercise (or no exercise) and a high-energy breakfast (or low-energy breakfast) as the repeated measures. The exercise or no-exercise session (0800 h) was followed by consumption of the low- or high-energy breakfast (0900 h). An ad libitum lunch test meal was provided 4 hours after the beginning of the exercise session (1200 h). Mood and motivation to eat were continuously tracked from 0800 until 1700 h by an electronic appetite ratings system (EARS). In general, morning subjective mood states (e.g., contentment) were significantly lower in the low-energy breakfast condition, but exercise reversed this effect. Exercise also significantly decreased feelings of lethargy, independent of the breakfast condition. Desire-to-eat and fullness ratings were significantly increased in the low-energy breakfast and high-energy breakfast conditions, respectively. Impairments of mood disappeared in the afternoon after consumption of an ad libitum lunch. In these healthy young adults, the condition inducing the largest energy deficit (exercise and low-energy breakfast) was not associated with the lowest mental states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that exercise (Ex) interventions create a stronger coupling between energy intake (EI) and energy expenditure (EE) leading to increased homeostasis of the energy-balance (EB) regulatory system compared to a diet intervention where an un-coupling between EI and EE occurs. The benefits of weight loss from Ex and diet interventions greatly depend on compensatory responses. The present study investigated an 8-week medium-term Ex and diet intervention program (Ex intervention comprised of 500kcal EE five days per week over four weeks at 65-75% maximal heart rate, whereas the diet intervention comprised of a 500kcal decrease in EI five days per week over four weeks) and its effects on compensatory responses and appetite regulation among healthy individuals using a between- and within-subjects design. Effects of an acute dietary manipulation on appetite and compensatory behaviours and whether a diet and/or Ex intervention pre-disposes individuals to disturbances in EB homeostasis were tested. Energy intake at an ad libitum lunch test meal after a breakfast high- and low-energy pre-load (the high energy pre-load contained 556kcal and the low energy pre-load contained 239kcal) were measured at the Baseline (Weeks -4 to 0) and Intervention (Weeks 0 to 4) phases in 13 healthy volunteers (three males and ten females; mean age 35 years [sd + 9] and mean BMI 25 kg/m2 [sd + 3.8]) [participants in each group included Ex=7, diet=5 (one female in the diet group dropped out midway), thus, 12 participants completed the study]. At Weeks -4, 0 and 4, visual analogue scales (VAS) were used to assess hunger and satiety and liking and wanting (L&W) for nutrient and taste preferences using a computer-based system (E-Prime v1.1.4). Ad libitum test meal EI was consistently lower after the HE pre-load compared to the LE pre-load. However, this was not consistent during the diet intervention however. A pre-load x group interaction on ad libitum test meal EI revealed that during the intervention phase the Ex group showed an improved sensitivity to detect the energy content between the two pre-loads and improved compensation for the ad libitum test meal whereas the diet group’s ability to differentiate between the two pre-loads decreased and showed poorer compensation (F[1,10]=2.88, p-value not significant). This study supports previous findings of the effect Ex and diet interventions have on appetite and compensatory responses; Ex increases and diet decreases energy balance sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current urban development in South East Queensland (SEQ) is impacted by a number of factors: growth and sprawl eroding subtropical character and identity; changing demographics and housing needs; lack of developable land; rising transport costs; diminishing fresh water supply; high energy consumption; and generic building designs which ignore local climate, landscape and lifestyle conditions. The Subtropical Row House project sought to research ‘best practice’ planning and design for contemporary and future needs for urban development in SEQ, and stimulate higher-density housing responses that achieve sustainable, low-energy and low water outcomes and support subtropical character and identity by developing a workable new typology for homes that the local market can adopt. The methodology was that of charrette, an established methodology in architecture and design. Four leading Queensland architectural firms were invited to form multidisciplinary creative teams. During the two-day charrette, the teams visited a selected greenfield site, defined the problems and issues, developed ideas and solutions, and benchmarked performance of designs using the Australian Green Building Council’s Pilot Green Star Multi-Unit residential tool. Each of the four resulting designs simultaneously express a positive relationship with climate and place by demonstrating: suitability for the subtropical climate; flexibility for a diversity of households; integrated building/site/vegetation strategies; market appeal to occupants and developers; affordability in operation; constructability by ‘domestic’ builders; and reduced energy, water and wastage. The project was awarded a Regional Commendation by the Australian Institute of Architects.