71 resultados para hidrates of natural gas
em Queensland University of Technology - ePrints Archive
Resumo:
Natural gas (the main component is methane) has been widely used as a fuel and raw material in industry. Removal of nitrogen (N2) from methane (CH4) can reduce the cost of natural gas transport and improve its efficiency. However, their extremely similar size increases the difficulty of separating N2 from CH4. In this study, we have performed a comprehensive investigation of N2 and CH4 adsorption on different charge states of boron nitride (BN) nanocage fullerene, B36N36, by using a density functional theory approach. The calculational results indicate that B36N36 in the negatively charged state has high selectivity in separating N2 from CH4. Moreover, once the extra electron is removed from the BN nanocage, the N2 will be released from the material. This study demonstrates that the B36N36 fullerene can be used as a highly selective and reusable material for the separation of N2 from CH4. The study also provides a clue to experimental design and application of BN nanomaterials for natural gas purification.
Resumo:
Compressed natural gas (CNG) engines are thought to be less harmful to the environment than conventional diesel engines, especially in terms of particle emissions. Although, this is true with respect to particulate matter (PM) emissions, results of particle number (PN) emission comparisons have been inconclusive. In this study, results of on-road and dynamometer studies of buses were used to derive several important conclusions. We show that, although PN emissions from CNG buses are significantly lower than from diesel buses at low engine power, they become comparable at high power. For diesel buses, PN emissions are not significantly different between acceleration and operation at steady maximum power. However, the corresponding PN emissions from CNG buses when accelerating are an order of magnitude greater than when operating at steady maximum power. During acceleration under heavy load, PN emissions from CNG buses are an order of magnitude higher than from diesel buses. The particles emitted from CNG buses are too small to contribute to PM10 emissions or contribute to a reduction of visibility, and may consist of semivolatile nanoparticles.
Resumo:
Volatile properties of particle emissions from four compressed natural gas (CNG) and four diesel buses were investigated under steady state and transient driving modes on a chassis dynamometer. The exhaust was diluted utilising a full-flow continuous volume sampling system and passed through a thermodenuder at controlled temperature. Particle number concentration and size distribution were measured with a condensation particle counter and a scanning mobility particle sizer, respectively. We show that, while almost all the particles emitted by the CNG buses were in the nanoparticle size range, at least 85% and 98% were removed at 100ºC and 250ºC, respectively. Closer analysis of the volatility of particles emitted during transient cycles showed that volatilisation began at around 40°C with the majority occurring by 80°C. Particles produced during hard acceleration from rest exhibited lower volatility than that produced during other times of the cycle. Based on our results and the observation of ash deposits on the walls of the tailpipes, we suggest that these non-volatile particles were composed mostly of ash from lubricating oil. Heating the diesel bus emissions to 100ºC removed ultrafine particle numbers by 69% to 82% when a nucleation mode was present and just 18% when it was not.
Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey
Resumo:
A rapid reforming of natural honey exposed to reactive low-temperature Ar + H2 plasmas produced high-quality, ultra-thin vertical graphenes, without any metal catalyst or external heating. This transformation is only possible in the plasma and fails in similar thermal processes. The process is energy-efficient, environmentally benign, and is much cheaper than common synthesis methods based on purified hydrocarbon precursors. The graphenes retain the essential minerals of natural honey, feature reactive open edges and reliable gas- and bio-sensing performance.
Resumo:
Coal seam gas operations produce significant quantities of associated water which often require demineralization. Ion exchange with natural zeolites has been proposed as a possible approach. The interaction of natural zeolites with solutions of sodium chloride and sodium bicarbonate in addition to coal seam gas water is not clear. Hence, we investigated ion exchange kinetics, equilibrium, and column behaviour of an Australian natural zeolite. Kinetic tests suggested that the pseudo first order equation best simulated the data. Intraparticle diffusion was part of the rate limiting step and more than one diffusion process controlled the overall rate of sodium ion uptake. Using a constant mass of zeolite and variable concentration of either sodium chloride or sodium bicarbonate resulted in a convex isotherm which was fitted by a Langmuir model. However, using a variable mass of zeolite and constant concentration of sodium ions revealed that the exchange of sodium ions with the zeolite surface sites was in fact unfavourable. Sodium ion exchange from bicarbonate solutions (10.3 g Na/kg zeolite) was preferred relative to exchange from sodium chloride solutions (6.4 g Na/kg zeolite). The formation of calcium carbonate species was proposed to explain the observed behaviour. Column studies of coal seam gas water showed that natural zeolite had limited ability to reduce the concentration of sodium ions (loading 2.1 g Na/kg zeolite) with rapid breakthrough observed. It was concluded that natural zeolites may not be suitable for the removal of cations from coal seam gas water without improvement of their physical properties.
Resumo:
Exhaust emissions from thirteen compressed natural gas (CNG) and nine ultralow sulphur diesel in-service transport buses were monitored on a chassis dynamometer. Measurements were carried out at idle and at three steady engine loads of 25%, 50% and 100% of maximum power at a fixed speed of 60 kmph. Emission factors were estimated for particle mass and number, carbon dioxide and oxides of nitrogen for two types of CNG buses (Scania and MAN, compatible with Euro 2 and 3 emission standards, respectively) and two types of diesel buses (Volvo Pre-Euro/Euro1 and Mercedez OC500 Euro3). All emission factors increased with load. The median particle mass emission factor for the CNG buses was less than 1% of that from the diesel buses at all loads. However, the particle number emission factors did not show a statistically significant difference between buses operating on the two types of fuel. In this paper, for the very first time, particle number emission factors are presented at four steady state engine loads for CNG buses. Median values ranged from the order of 1012 particles min-1 at idle to 1015 particles km-1 at full power. Most of the particles observed in the CNG emissions were in the nanoparticle size range and likely to be composed of volatile organic compounds The CO2 emission factors were about 20% to 30% greater for the diesel buses over the CNG buses, while the oxides of nitrogen emission factors did not show any difference due to the large variation between buses.
Resumo:
Motor vehicle emission factors are generally derived from driving tests mimicking steady state conditions or transient drive cycles. However, neither of these test conditions completely represents real world driving conditions. In particular, they fail to determine emissions generated during the accelerating phase – a condition in which urban buses spend much of their time. In this study we analyse and compare the results of time-dependant emission measurements conducted on diesel and compressed natural gas (CNG) buses during an urban driving cycle on a chassis dynamometer and we derive power-law expressions relating carbon dioxide (CO2) emission factors to the instantaneous speed while accelerating from rest. Emissions during acceleration are compared with that during steady speed operation. These results have important implications for emission modelling particularly under congested traffic conditions.
Resumo:
Selective separation of nitrogen (N2) from methane (CH4) is highly significant in natural gas purification, and it is very challenging to achieve this because of their nearly identical size (the molecular diameters of N2 and CH4 are 3.64 Å and 3.80 Å, respectively). Here we theoretically study the adsorption of N2 and CH4 on B12 cluster and solid boron surfaces a-B12 and c-B28. Our results show that these electron-deficiency boron materials have higher selectivity in adsorbing and capturing N2 than CH4, which provides very useful information for experimentally exploiting boron materials for natural gas purification.
Resumo:
According to a study conducted by the International Maritime organisation (IMO) shipping sector is responsible for 3.3% of the global Greenhouse Gas (GHG) emissions. The 1997 Kyoto Protocol calls upon states to pursue limitation or reduction of emissions of GHG from marine bunker fuels working through the IMO. In 2011, 14 years after the adoption of the Kyoto Protocol, the Marine Environment Protection Committee (MEPC) of the IMO has adopted mandatory energy efficiency measures for international shipping which can be treated as the first ever mandatory global GHG reduction instrument for an international industry. The MEPC approved an amendment of Annex VI of the 1973 International Convention for the Prevention of Pollution from Ships (MARPOL 73/78) to introduce a mandatory Energy Efficiency Design Index (EEDI) for new ships and the Ship Energy Efficiency Management Plan (SEEMP) for all ships. Considering the growth projections of human population and world trade the technical and operational measures may not be able to reduce the amount of GHG emissions from international shipping in a satisfactory level. Therefore, the IMO is considering to introduce market-based mechanisms that may serve two purposes including providing a fiscal incentive for the maritime industry to invest in more energy efficient manner and off-setting of growing ship emissions. Some leading developing countries already voiced their serious reservations on the newly adopted IMO regulations stating that by imposing the same obligation on all countries, irrespective of their economic status, this amendment has rejected the Principle of Common but Differentiated Responsibility (the CBDR Principle), which has always been the cornerstone of international climate change law discourses. They also claimed that negotiation for a market based mechanism should not be continued without a clear commitment from the developed counters for promotion of technical co-operation and transfer of technology relating to the improvement of energy efficiency of ships. Against this backdrop, this article explores the challenges for the developing counters in the implementation of already adopted technical and operational measures.
Resumo:
International shipping is responsible for about 2.7% of the global emissions of CO2. In the absence of proper action, emissions from the maritime sector may grow by 150% to 250% by 2050, in comparison with the level of emissions in 2007. Against this backdrop, the International Maritime Organisation has introduced a mandatory Energy Efficiency Design Index (EEDI) for new ships and the Ship Energy Efficiency Management Plan (SEEMP) for all ships. Some Asian countries have voiced serious reservations about the newly adopted IMO regulations. They have suggested that imposing the same obligations on all countries, irrespective of their economic status, is a serious departure from the Principle of Common but Differentiated Responsibility, which has always been the cornerstone of international climate change law discourse. Against this backdrop, this article presents a brief overview of the technical and operational measures from the perspective of Asian countries.
Resumo:
With increasing signs of climate change and the influence of national and international carbon-related laws and agreements, governments all over the world are grappling with how to rapidly transition to low-carbon living. This includes adapting to the impacts of climate change that are very likely to be experienced due to current emission levels (including extreme weather and sea level changes), and mitigating against further growth in greenhouse gas emissions that are likely to result in further impacts. Internationally, the concept of ‘Biophilic Urbanism’, a term coined by Professors Tim Beatley and Peter Newman to refer to the use of natural elements as design features in urban landscapes, is emerging as a key component in addressing such climate change challenges in rapidly growing urban contexts. However, the economics of incorporating such options is not well understood and requires further attention to underpin a mainstreaming of biophilic urbanism. Indeed, there appears to be an ad hoc, reactionary approach to creating economic arguments for or against the design, installation or maintenance of natural elements such as green walls, green roofs, streetscapes, and parklands. With this issue in mind, this paper will overview research as part of an industry collaborative research project that considers the potential for using a number of environmental economic valuation techniques that have evolved over the last several decades in agricultural and resource economics, to systematically value the economic value of biophilic elements in the urban context. Considering existing literature on environmental economic valuation techniques, the paper highlights opportunities for creating a standardised language for valuing biophilic elements. The conclusions have implications for expanding the field of environmental economic value to support the economic evaluations and planning of the greater use of natural elements in cities. Insights are also noted for the more mature fields of agricultural and resource economics.
Resumo:
Concern about the risk of harmful human-induced climate change has resulted in international efforts to reduce greenhouse gas emissions to the atmosphere. We review the international and national context for consideration of greenhouse abatement in native vegetation management and discuss potential options in Queensland. Queensland has large areas of productive or potentially productive land with native woody vegetation cover with approximately 76 million ha with woody cover remaining in 1991. High rates of tree clearing, predominantly to increase pasture productivity, continued throughout the 1990s with an average 345,000 ha/a estimated to have been cleared, including non-remnant (woody regrowth) as well as remnant vegetation. Estimates of greenhouse gas emissions associated with land clearing currently have a high uncertainty but clearing was reported to contribute a significant proportion of Australia's total greenhouse gas emissions from 1990 (21%) to 1999 (13%). In Queensland, greenhouse emissions from land clearing were estimated to have been 54.5 Mt CO(2)-e in 1999. Management of native vegetation for timber harvesting and the proliferation of woody vegetation (vegetation thickening) in the grazed woodlands also represent large carbon fluxes. Forestry (plantations and native forests) in Queensland was reported to be a 4.4 Mt CO(2)-e sink in 1999 but there are a lack of comprehensive data on timber harvesting in private hardwood forests. Vegetation thickening is reported for large areas of the c. 60 million ha grazed woodlands in Queensland. The magnitude of the carbon sink in 27 million ha grazed eucalypt woodlands has been estimated to be 66 Mt CO(2)-e/a but this sink is not currently included in Australia's inventory of anthropogenic greenhouse emissions. Improved understanding of the function and dynamics of natural and managed ecosystems is required to support management of native vegetation to preserve and enhance carbon stocks for greenhouse benefits while meeting objectives of sustainable and productive management and biodiversity protection.
Resumo:
The international shipping sector is a major contributor to global greenhouse gas (GHG) emissions. The International Maritime Organisation (IMO) has adopted some technical and operational measures to reduce GHG emissions from international shipping. However, these measures may not be enough to reduce the amount of GHG emissions from international shipping to an acceptable level. Therefore, the IMO Member States are currently considering a number of proposals for the introduction of market-based measures (MBMs). During the negotiation process, some leading developing countries raised questions about the probable confl ict of the proposed MBMs with the rules of the World Trade Organisation (WTO). This article comprehensively examines this issue and argues that none of the MBM proposals currently under consideration by the IMO has any confl ict with the WTO rules.