287 resultados para healthy cities
em Queensland University of Technology - ePrints Archive
Resumo:
Introduction - The planning for healthy cities faces significant challenges due to lack of effective information, systems and a framework to organise that information. Such a framework is critical in order to make accessible and informed decisions for planning healthy cities. The challenges for planning healthy cities have been magnified by the rise of the healthy cities movement, as a result of which, there have been more frequent calls for localised, collaborative and knowledge-based decisions. Some studies have suggested that the use of a ‘knowledge-based’ approach to planning will enhance the accuracy and quality decision-making by improving the availability of data and information for health service planners and may also lead to increased collaboration between stakeholders and the community. A knowledge-based or evidence-based approach to decision-making can provide an ‘out-of-the-box’ thinking through the use of technology during decision-making processes. Minimal research has been conducted in this area to date, especially in terms of evaluating the impact of adopting knowledge-based approach on stakeholders, policy-makers and decision-makers within health planning initiatives. Purpose – The purpose of the paper is to present an integrated method that has been developed to facilitate a knowledge-based decision-making process to assist health planning Methodology – Specifically, the paper describes the participatory process that has been adopted to develop an online Geographic Information System (GIS)-based Decision Support System (DSS) for health planners. Value – Conceptually, it is an application of Healthy Cities and Knowledge Cities approaches which are linked together. Specifically, it is a unique settings-based initiative designed to plan for and improve the health capacity of Logan-Beaudesert area, Australia. This setting-based initiative is named as the Logan-Beaudesert Health Coalition (LBHC). Practical implications - The paper outlines the application of a knowledge-based approach to the development of a healthy city. Also, it focuses on the need for widespread use of this approach as a tool for enhancing community-based health coalition decision making processes.
Resumo:
The increasing ubiquity of digital technology, internet services and location-aware applications in our everyday lives allows for a seamless transitioning between the visible and the invisible infrastructure of cities: road systems, building complexes, information and communication technology, and people networks create a buzzing environment that is alive and exciting. Driven by curiosity, initiative and interdisciplinary exchange, the Urban Informatics Research Lab at Queensland University of Technology (QUT), Brisbane, Australia, is an emerging cluster of people interested in research and development at the intersection of people, place and technology with a focus on cities, locative media and mobile technology. This paper introduces urban informatics as a transdisciplinary practice across people, place and technology that can aid local governments, urban designers and planners in creating responsive and inclusive urban spaces and nurturing healthy cities. Three challenges are being discussed. First, people, and the challenge of creativity explores the opportunities and challenges of urban informatics that can lead to the design and development of new tools, methods and applications fostering participation, the democratisation of knowledge, and new creative practices. Second, technology, and the challenge of innovation examines how urban informatics can be applied to support user-led innovation with a view to promote entrepreneurial ideas and creative industries. Third, place, and the challenge of engagement discusses the potential to establish places within cities that are dedicated to place-based applications of urban informatics with a view to deliver community and civic engagement strategies.
Resumo:
This chapter examines the challenges and opportunities associated with planning for competitive, smart and healthy cities. The chapter is based on the assumptions that a healthy city is an important prerequisite for a competitive city and a fundamental outcome of smart cities. Thus, it is preeminent to understand the planning decision support system based on local determinants of health, economic and social factors. One of the major decision support systems is e-health and this chapter will focus on the role of e-health planning, by utilising web-based geographic decision support systems. The proposed novel decision support system would provide a powerful and effective platform for stakeholders to access online information for a better decision-making while empowering community participation. The chapter also highlights the need for a comprehensive conceptual framework to guide the decision process of planning for healthy cities in association with opportunities and limitations. In summary, this chapter provides the critical insights of using information science-based framework and suggest online decision support methods, as part of a broader e-health approach for creating a healthy, competitive and smart city.
Resumo:
This chapter investigates the challenges and opportunities associated with planning for a competitive city. The chapter is based on the assumption that a healthy city is a fundamental prerequisite for a competitive city. Thus, it is critical to examine the local determinants of health and factor these into any planning efforts. The main focus of the chapter is on the role of e-health planning, by utilising web-based geographic decision support systems. The proposed novel decision support system would provide a powerful and effective platform for stakeholders to access essential data for decision-making purposes. The chapter also highlights the need for a comprehensive information framework to guide the process of planning for healthy cities. Additionally, it discusses the prospects and constraints of such an approach. In summary, this chapter outlines the potential insights of using information science-based framework and suggests practical planning methods, as part of a broader e-health approach for improving the health characteristics of competitive cities.
Resumo:
In the last few decades, the focus on building healthy communities has grown significantly (Ashton, 2009). There is growing evidence that new approaches to planning are required to address the challenges faced by contemporary communities. These approaches need to be based on timely access to local information and collaborative planning processes (Murray, 2006; Scotch & Parmanto, 2006; Ashton, 2009; Kazda et al., 2009). However, there is little research to inform the methods that can support this type of responsive, local, collaborative and consultative health planning (Northridge et al., 2003). Some research justifies the use of decision support systems (DSS) as a tool to support planning for healthy communities. DSS have been found to increase collaboration between stakeholders and communities, improve the accuracy and quality of the decision-making process, and improve the availability of data and information for health decision-makers (Nobre et al., 1997; Cromley & McLafferty, 2002; Waring et al., 2005). Geographic information systems (GIS) have been suggested as an innovative method by which to implement DSS because they promote new ways of thinking about evidence and facilitate a broader understanding of communities. Furthermore, literature has indicated that online environments can have a positive impact on decision-making by enabling access to information by a broader audience (Kingston et al., 2001). However, only limited research has examined the implementation and impact of online DSS in the health planning field. Previous studies have emphasised the lack of effective information management systems and an absence of frameworks to guide the way in which information is used to promote informed decisions in health planning. It has become imperative to develop innovative approaches, frameworks and methods to support health planning. Thus, to address these identified gaps in the knowledge, this study aims to develop a conceptual planning framework for creating healthy communities and examine the impact of DSS in the Logan Beaudesert area. Specifically, the study aims to identify the key elements and domains of information that are needed to develop healthy communities, to develop a conceptual planning framework for creating healthy communities, to collaboratively develop and implement an online GIS-based Health DSS (i.e., HDSS), and to examine the impact of the HDSS on local decision-making processes. The study is based on a real-world case study of a community-based initiative that was established to improve public health outcomes and promote new ways of addressing chronic disease. The study involved the development of an online GIS-based health decision support system (HDSS), which was applied in the Logan Beaudesert region of Queensland, Australia. A planning framework was developed to account for the way in which information could be organised to contribute to a healthy community. The decision support system was developed within a unique settings-based initiative Logan Beaudesert Health Coalition (LBHC) designed to plan and improve the health capacity of Logan Beaudesert area in Queensland, Australia. This setting provided a suitable platform to apply a participatory research design to the development and implementation of the HDSS. Therefore, the HDSS was a pilot study examined the impact of this collaborative process, and the subsequent implementation of the HDSS on the way decision-making was perceived across the LBHC. As for the method, based on a systematic literature review, a comprehensive planning framework for creating healthy communities has been developed. This was followed by using a mixed method design, data were collected through both qualitative and quantitative methods. Specifically, data were collected by adopting a participatory action research (PAR) approach (i.e., PAR intervention) that informed the development and conceptualisation of the HDSS. A pre- and post-design was then used to determine the impact of the HDSS on decision-making. The findings of this study revealed a meaningful framework for organising information to guide planning for healthy communities. This conceptual framework provided a comprehensive system within which to organise existing data. The PAR process was useful in engaging stakeholders and decision-making in the development and implementation of the online GIS-based DSS. Through three PAR cycles, this study resulted in heightened awareness of online GIS-based DSS and openness to its implementation. It resulted in the development of a tailored system (i.e., HDSS) that addressed the local information and planning needs of the LBHC. In addition, the implementation of the DSS resulted in improved decision- making and greater satisfaction with decisions within the LBHC. For example, the study illustrated the culture in which decisions were made before and after the PAR intervention and what improvements have been observed after the application of the HDSS. In general, the findings indicated that decision-making processes are not merely informed (consequent of using the HDSS tool), but they also enhance the overall sense of ‗collaboration‘ in the health planning practice. For example, it was found that PAR intervention had a positive impact on the way decisions were made. The study revealed important features of the HDSS development and implementation process that will contribute to future research. Thus, the overall findings suggest that the HDSS is an effective tool, which would play an important role in the future for significantly improving the health planning practice.
Resumo:
Actions Towards Sustainable Outcomes Environmental Issues/Principal Impacts The increasing urbanisation of cities brings with it several detrimental consequences, such as: • Significant energy use for heating and cooling many more buildings has led to urban heat islands and increased greenhouse gas emissions. • Increased amount of hard surfaces, which not only contributes to higher temperatures in cities, but also to increased stormwater runoff. • Degraded air quality and noise. • Health and general well-being of people is frequently compromised, by inadequate indoor air quality. • Reduced urban biodiversity. Basic Strategies In many design situations, boundaries and constraints limit the application of cutting EDGe actions. In these circumstances, designers should at least consider the following: • Living walls are an emerging technology, and many Australian examples function more as internal feature walls. However,as understanding of the benefits and construction of living walls develops this technology could be part of an exterior facade that enhances a building’s thermal performance. • Living walls should be designed to function with an irrigation system using non-potable water. Cutting EDGe Strategies • Living walls can be part of a design strategy that effectively improves the thermal performance of a building, thereby contributing to lower energy use and greenhouse gas emissions. • Including living walls in the initial stages of design would provide greater flexibility to the design, especially of the facade, structural supports, mechanical ventilation and watering systems, thus lowering costs. • Designing a building with an early understanding of living walls can greatly reduce maintenance costs. • Including plant species and planting media that would be able to remove air impurities could contribute to improved indoor air quality, workplace productivity and well-being. Synergies and References • Living walls are a key research topic at the Centre for Subtropical Design, Queensland University of Technology: http://www.subtropicaldesign.bee.qut.edu.au • BEDP Environment Design Guide: DES 53: Roof and Facade Gardens • BEDP Environment Design Guide: GEN 4: Positive Development – Designing for Net Positive Impacts (see green scaffolding and green space frame walls). • Green Roofs Australia: www.greenroofs.wordpress.com • Green Roofs for Healthy Cities USA: www.greenroofs.org
Resumo:
The field of collaborative health planning faces significant challenges due to the lack of effective information, systems and the absence of a framework to make informed decisions. These challenges have been magnified by the rise of the healthy cities movement, consequently, there have been more frequent calls for localised, collaborative and evidence-driven decision-making. Some studies in the past have reported that the use of decision support systems (DSS) for planning healthy cities may lead to: increase collaboration between stakeholders and the general public, improve the accuracy and quality of the decision-making processes and improve the availability of data and information for health decision-makers. These links have not yet been fully tested and only a handful of studies have evaluated the impact of DSS on stakeholders, policy-makers and health planners. This study suggests a framework for developing healthy cities and introduces an online Geographic Information Systems (GIS)-based DSS for improving the collaborative health planning. It also presents preliminary findings of an ongoing case study conducted in the Logan-Beaudesert region of Queensland, Australia. These findings highlight the perceptions of decision-making prior to the implementation of the DSS intervention. Further, the findings help us to understand the potential role of the DSS to improve collaborative health planning practice.
Resumo:
The field of collaborative health planning faces significant challenges posed by the lack of effective information, systems and a framework to organise that information. Such a framework is critical in order to make accessible and informed decisions for planning healthy cities. The challenges have been exaggerated by the rise of the healthy cities movement, as a result of which, there have been more frequent calls for localised, collaborative and evidence-based decision-making. Some studies suggest that the use of ICT-based tools in health planning may lead to: increased collaboration between stakeholder sand the community; improve the accuracy and quality of the decision making process; and, improve the availability of data and information for health decision-makers as well as health service planners. Research has justified the use of decision support systems (DSS) in planning for healthy cities as these systems have been found to improve the planning process. DSS are information communication technology (ICT) tools including geographic information systems (GIS) that provide the mechanisms to help decision-makers and related stake holders assess complex problems and solve these in a meaningful way. Consequently, it is now more possible than ever before to make use of ICT-based tools in health planning. However, knowledge about the nature and use of DSS within collaborative health planning is relatively limited. In particular, little research has been conducted in terms of evaluating the impact of adopting these tools upon stakeholders, policy-makers and decision-makers within the health planning field. This paper presents an integrated method that has been developed to facilitate an informed decision-making process to assist in the health planning process. Specifically, the paper describes the participatory process that has been adopted to develop an online GIS-based DSS for health planners. The literature states that the overall aim of DSS is to improve the efficiency of the decisions made by stakeholders, optimising their overall performance and minimizing judgmental biases. For this reason, the paper examines the effectiveness and impact of an innovative online GIS-based DSS on health planners. The case study of the online DSS is set within a unique settings-based initiative designed to plan for and improve the health capacity of Logan-Beaudesert area, Australia. This unique setting-based initiative is named the Logan-Beaudesert Health Coalition (LBHC).The paper outlines the impact occurred by implementing the ICT-based DSS. In conclusion, the paper emphasizes upon the need for the proposed tool for enhancing health planning.
Resumo:
Summary of Actions Towards Sustainable Outcomes Environmental Issues / Principal Impacts The increased growth of cities is intensifying its impact on people and the environment through: • increased use of energy for the heating and cooling of more buildings, leading to urban heat islands and more greenhouse gas emissions • increased amount of hard surfaces contributing to higher temperatures in cities and more stormwater runoff • degraded air quality and noise impact • reduced urban biodiversity • compromised health and general well-being of people Basic Strategies In many design situations boundaries and constraints limit the application of cutting EDGe actions. In these circumstances designers should at least consider the following: • Consider green roofs early in the design process in consultation with all stakeholders to enable maximised integration with building systems and to mitigate building cost (avoid constructing as a retrofit). • Design of the green roof as part of a building’s structural, mechanical and hydraulic systems could lead to structural efficiency, the ability to optimise cooling benefits and better integrated water recycling systems. • Inform the selection of the type of green roof by considering its function, for example designing for social activity, required maintenance/access regime, recycling of water or habitat regeneration or a combination of uses. • Evaluate existing surroundings to determine possible links to the natural environment and choice of vegetation for the green roof with availability of local plant supply and expertise. Cutting EDGe Strategies • Create green roofs to contribute positively to the environment through reduced urban heat island effect and building temperatures, to improved stormwater quality, increased natural habitats, provision of social spaces and opportunity for increased local food supply. • Maximise solar panel efficiency by incorporating with design of green roof. • Integrate multiple functions for a single green roof such as grey water recycling, food production, more bio-diverse plantings, air quality improvement and provision of delightful spaces for social interaction. Synergies & references • BEDP Environment Design Guide DES 53: Roof and Facade Gardens GEN 4: Positive Development – designing for Net Positive Impacts TEC 26: Living Walls - a way to green the built environment • Green Roofs Australia: www.greenroofs.wordpress.com • International Green Roof Association: www.igra-world.com • Green Roofs for Healthy Cities (USA): www.greenroofs.org • Centre for Urban Greenery and Ecology (Singapore): http://research.cuge.com.sg
Resumo:
A move to more sustainable living can provide immediate and long term health and environmental benefits. The Green Living Study consisted of a mail survey of 1186 South East Queensland residents and an online survey of a further 451 individuals, primarily from South East Queensland, and explored the predictors of environmentally friendly behaviour. This paper explores the underlying beliefs that were found to predict specific environmentally friendly behaviours, such as walking for transport, switching off lights when not in use, switching off unused appliances at the wall and shopping with reusable bags. Beliefs explored included social norms, advantages and disadvantages of performing the behaviours, and issues of control over ones behaviour. The findings showed that people’s environmentally friendly behaviours may be influenced by convenience, saving money and saving face; i.e. is it easy to do, will I be better off, and will I be seen as ‘different’? Understanding the beliefs which directly predict behaviour can help inform public policy and educational initiatives. A number of models for transferring this knowledge into policy and practice will be discussed.
Resumo:
This study examines the impact of utilising a Decision Support System (DSS) in a practical health planning study. Specifically, it presents a real-world case of a community-based initiative aiming to improve overall public health outcomes. Previous studies have emphasised that because of a lack of effective information, systems and an absence of frameworks for making informed decisions in health planning, it has become imperative to develop innovative approaches and methods in health planning practice. Online Geographical Information Systems (GIS) has been suggested as one of the innovative methods that will inform decision-makers and improve the overall health planning process. However, a number of gaps in knowledge have been identified within health planning practice: lack of methods to develop these tools in a collaborative manner; lack of capacity to use the GIS application among health decision-makers perspectives, and lack of understanding about the potential impact of such systems on users. This study addresses the abovementioned gaps and introduces an online GIS-based Health Decision Support System (HDSS), which has been developed to improve collaborative health planning in the Logan-Beaudesert region of Queensland, Australia. The study demonstrates a participatory and iterative approach undertaken to design and develop the HDSS. It then explores the perceived user satisfaction and impact of the tool on a selected group of health decision makers. Finally, it illustrates how decision-making processes have changed since its implementation. The overall findings suggest that the online GIS-based HDSS is an effective tool, which has the potential to play an important role in the future in terms of improving local community health planning practice. However, the findings also indicate that decision-making processes are not merely informed by using the HDSS tool. Instead, they seem to enhance the overall sense of collaboration in health planning practice. Thus, to support the Healthy Cities approach, communities will need to encourage decision-making based on the use of evidence, participation and consensus, which subsequently transfers into informed actions.
Resumo:
The ageing population is increasing worldwide, as are a range of chronic diseases, conditions, and physical and cognitive disabilities associated with later life. The older population is also neurologically diverse, with unique and specific challenges around mobility and engagement with the urban environment. Older people tend to interact less with cities and neighbourhoods, putting them at risk of further illnesses and co-morbidities associated with being less physically and socially active. Empirical evidence has shown that reduced access to healthcare services, health-related resources and social interaction opportunities is associated with increases in morbidity and premature mortality. While it is crucial to respond to the needs of this ageing population, there is insufficient evidence for interventions regarding their experiences of public space from the vantage point of neurodiversity. This paper provides a conceptual and methodological framework to investigate relationships between the sensory and cognitive abilities of older people, and their use and negotiation of the urban environment. The paper will refer to a case example of the city of Logan, an urban area in Queensland, Australia, where current urban development provides opportunities for the design of spaces that take experiences of neurodiversity into account. The framework will inform the development of principles for urban design for increasingly neurologically diverse populations.
Resumo:
A technologically innovative study was undertaken across two suburbs in Brisbane, Australia, to assess socioeconomic differences in women's use of the local environment for work, recreation, and physical activity. Mothers from high and low socioeconomic suburbs were instructed to continue with usual daily routines, and to use mobile phone applications (Facebook Places, Twitter, and Foursquare) on their mobile phones to ‘check-in’ at each location and destination they reached during a one-week period. These smartphone applications are able to track travel logistics via built-in geographical information systems (GIS), which record participants’ points of latitude and longitude at each destination they reach. Location data were downloaded to Google Earth and excel for analysis. Women provided additional qualitative data via text regarding the reasons and social contexts of their travel. We analysed 2183 ‘check-ins’ for 54 women in this pilot study to gain quantitative, qualitative, and spatial data on human-environment interactions. Data was gathered on distances travelled, mode of transport, reason for travel, social context of travel, and categorised in terms of physical activity type – walking, running, sports, gym, cycling, or playing in the park. We found that the women in both suburbs had similar daily routines with the exception of physical activity. We identified 15% of ‘check-ins’ in the lower socioeconomic group as qualifying for the physical activity category, compared with 23% in the higher socioeconomic group. This was explained by more daily walking for transport (1.7kms to 0.2kms) and less car travel each week (28.km to 48.4kms) in the higher socioeconomic suburb. We ascertained insights regarding the socio-cultural influences on these differences via additional qualitative data. We discuss the benefits and limitations of using new technologies and Google Earth with implications for informing future physical and social aspects of urban design, and health promotion in socioeconomically diverse cities.
Resumo:
Due to ever increasing climate instability, the number of natural disasters affecting society and communities is expected to increase globally in the future, which will result in a growing number of casualties and damage to property and infrastructure. Such damage poses crucial challenges for recovery of interdependent critical infrastructures. Post-disaster reconstruction is a complex undertaking as it is not only closely linked to the well-being and essential functioning of society, but also requires a large financial commitment. Management of critical infrastructure during post-disaster recovery needs to be underpinned by a holistic recognition that the recovery of each individual infrastructure system (e.g. energy, water, transport and information and communication technology) can be affected by the interdependencies that exist between these different systems. A fundamental characteristic of these interdependencies is that failure of one critical infrastructure system can result in the failure of other interdependent infrastructures, leading to a cascade of failures, which can impede post-disaster recovery and delay the subsequent reconstruction process. Consequently, there is a critical need for developing a holistic strategy to assess the influence of infrastructure interdependencies, and for incorporating these interdependencies into a post-disaster recovery strategy. This paper discusses four key dimensions of interdependencies that need to be considered in a post-disaster reconstruction planning. Using key concepts and sub-concepts derived from the notion of interdependency, the paper examines how critical infrastructure interdependencies affect the recovery processes of damaged infrastructures.
Resumo:
This paper documents a preliminary investigation into the relationship between neurodiversity and the built environment using a pilot project developed with Logan City Council and engaging candidates within the Master of Urban Design at the Queensland University of Technology. The research begins to examine the way many places are designed and built can be alienating and inhibit accessibility to people with movement and sensory differences. Logan Central has been used as a case study area to map the physical attributes, and identify barriers and challenges in the built environment – specifically for people with disabilities but also taking in consideration the wider population. The integration of all individuals – mainstream, those with disability, differences and multigenerational populations – strengthens the social and economic fabric of Australia, enabling its citizens to live healthy, productive, and fulfilling lives.