95 resultados para grazing intensity

em Queensland University of Technology - ePrints Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Excessive grazing pressure is detrimental to plant productivity and may lead to declines in soil organic matter. Soil organic matter is an important source of plant nutrients and can enhance soil aggregation, limit soil erosion, and can also increase cation exchange and water holding capacities, and is, therefore, a key regulator of grassland ecosystem processes. Changes in grassland management which reverse the process of declining productivity can potentially lead to increased soil C. Thus, rehabilitation of areas degraded by overgrazing can potentially sequester atmospheric C. We compiled data from the literature to evaluate the influence of grazing intensity on soil C. Based on data contained within these studies, we ascertained a positive linear relationship between potential C sequestration and mean annual precipitation which we extrapolated to estimate global C sequestration potential with rehabilitation of overgrazed grassland. The GLASOD and IGBP DISCover data sets were integrated to generate a map of overgrazed grassland area for each of four severity classes on each continent. Our regression model predicted losses of soil C with decreased grazing intensity in drier areas (precipitation less than 333 mm yr(-1)), but substantial sequestration in wetter areas. Most (93%) C sequestration potential occurred in areas with MAP less than 1800 mm. Universal rehabilitation of overgrazed grasslands can sequester approximately 45 Tg C yr(-1), most of which can be achieved simply by cessation of overgrazing and implementation of moderate grazing intensity. Institutional level investments by governments may be required to sequester additional C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light Detection and Ranging (LIDAR) has great potential to assist vegetation management in power line corridors by providing more accurate geometric information of the power line assets and vegetation along the corridors. However, the development of algorithms for the automatic processing of LIDAR point cloud data, in particular for feature extraction and classification of raw point cloud data, is in still in its infancy. In this paper, we take advantage of LIDAR intensity and try to classify ground and non-ground points by statistically analyzing the skewness and kurtosis of the intensity data. Moreover, the Hough transform is employed to detected power lines from the filtered object points. The experimental results show the effectiveness of our methods and indicate that better results were obtained by using LIDAR intensity data than elevation data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine the effect of acute bouts of moderate- and high-intensity walking exercise on non-exercise activity thermogenesis (NEAT) in overweight and obese adults. ---------- METHOD: 16 participants performed a single bout of either moderate-intensity walking exercise (MIE) or high-intensity walking exercise (HIE) on two separate occasions. The MIE consisted of walking for 60 minutes on a motorized treadmill at 6 km.h. The 60-minute HIE session consisted of walking in 5-min intervals at 6 km.h and 10% grade followed by 5-min at 0% grade. NEAT was assessed by accelerometer on three days before, the day of, and three days following the exercise sessions. ---------- RESULTS: There was no significant difference in NEAT vector magnitude (counts.min) between the pre-exercise period (days 1-3) and the exercise day (day 4) for either MIE or HIE protocol. In addition, there was no change in NEAT during the three days following the MIE session, however NEAT increased by 16% on day 7 (post-exercise) compared with exercise day (P = 0.32). However during the post-exercise period following the HIE session, NEAT was increased by 25% on day 7 compared with the exercise day (P = 0.08), and by 30-33% compared with pre-exercise period (day 1, day 2 and day 3); P = 0.03, 0.03, 0.02, respectively. ---------- CONCLUSION: A single bout of either MIE or HIE did not alter NEAT on the exercise day or on the first two days following the exercise session. However, monitoring NEAT on a third day allowed the detection of a 48-h delay in increased NEAT after performing HIE. A longer-term intervention is needed to determine the effect of accumulated exercise sessions over a week on NEAT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in grassland management intended to increase productivity can lead to sequestration of substantial amounts of atmospheric C in soils. Management-intensive grazing (MiG) can increase forage production in mesic pastures, but potential impacts on soil C have not been evaluated. We sampled four pastures (to 50 cm depth) in Virginia, USA, under MiG and neighboring pastures that were extensively grazed or bayed to evaluate impacts of grazing management on total soil organic C and N pools, and soil C fractions. Total organic soil C averaged 8.4 Mg C ha(-1) (22%) greater under MiG; differences were significant at three of the four sites examined while total soil N was greater for two sites. Surface (0-10 cm) particulate organic matter (POM) C increased at two sites; POM C for the entire depth increment (0-50 cm) did not differ significantly between grazing treatments at any of the sites. Mineral-associated C was related to silt plus clay content and tended to be greater under MiG. Neither soil C:N ratios, POM C, or POM C:total C ratios were accurate indicators of differences in total soil C between grazing treatments, though differences in total soil C between treatments attributable to changes in POM C (43%) were larger than expected based on POM C as a percentage of total C (24.5%). Soil C sequestration rates, estimated by calculating total organic soil C differences between treatments (assuming they arose from changing grazing management and can be achieved elsewhere) and dividing by duration of treatment, averaged 0.41 Mg C ha(-1) year(-1) across the four sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the accuracy of dose calculations in intensity-modulated radiotherapy of the head and neck is essential for clinical confidence in these highly conformal treatments. High dose gradients are frequently placed very close to critical structures, such as the spinal cord, and good coverage of complex shaped nodal target volumes is important for long term-local control. A phantom study is presented comparing the performance of standard clinical pencil-beam and collapsed-cone dose algorithms to Monte Carlo calculation and three-dimensional gel dosimetry measurement. All calculations and measurements are normalized to the median dose in the primary planning target volume, making this a purely relative study. The phantom simulates tissue, air and bone for a typical neck section and is treated using an inverse-planned 5-field IMRT treatment, similar in character to clinically used class solutions. Results indicate that the pencil-beam algorithm fails to correctly model the relative dose distribution surrounding the air cavity, leading to an overestimate of the target coverage. The collapsed-cone and Monte Carlo results are very similar, indicating that the clinical collapsed-cone algorithm is perfectly sufficient for routine clinical use. The gel measurement shows generally good agreement with the collapsed-cone and Monte Carlo calculated dose, particularly in the spinal cord dose and nodal target coverage, thus giving greater confidence in the use of this class solution.