57 resultados para grain yield

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of appropriate nursery environments will maximize gain from selection for yield of wheat (Triticum aestivum L.) in the target population of environments of a breeding program. The objective of this study was to investigate how well-irrigated (low-stress) nursery environments predict yield of lines in target environments that varied in degree of water limitation. Fifteen lines were sampled from the preliminary yield evaluation stage of the Queensland wheat breeding program and tested in 26 trials under on-farm conditions (Target Environments) across nine years (1985 to 1993) and also in 27 trials conducted at three research stations (Nursery Environments) in three years (1987 to 1989). The nursery environments were structured to impose different levels of water and nitrogen (N) limitation, whereas the target environments represented a random sample of on-farm conditions from the target population of environments. Indirect selection and pattern analysis methods were used to investigate selection for yield in the nursery environments and gain from selection in the target environments. Yield under low-stress nursery conditions was an effective predictor of yield under similar low-stress target environments (r = 0.89, P < 0.01). However, the value of the low-stress nursery as a predictor of yield in the water-limited target environments decreased with increasing water stress (moderate stress r = 0.53, P < 0.05, to r = 0.38, P > 0.05; severe stress r = -0.08, P > 0.05). Yield in the stress nurseries was a poor predictor of yield in the target environments. Until there is a clear understanding of the physiological-genetic basis of variation for adaptation of wheat to the water-limited environments in Queensland, yield improvement can best be achieved by selection for a combination of yield potential in an irrigated low-stress nursery and yield in on-farm trials that sample the range of water-limited environments of the target population of environments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Projected increases in atmospheric carbon dioxide concentration ([CO2]) and air temperature associated with future climate change are expected to affect crop development, crop yield, and, consequently, global food supplies. They are also likely to change agricultural production practices, especially those related to agricultural water management and sowing date. The magnitude of these changes and their implications to local production systems are mostly unknown. The objectives of this study were to: (i) simulate the effect of projected climate change on spring wheat (Triticum aestivum L. cv. Lang) yield and water use for the subtropical environment of the Darling Downs, Queensland, Australia; and (ii) investigate the impact of changing sowing date, as an adaptation strategy to future climate change scenarios, on wheat yield and water use. The multimodel climate projections from the IPCC Coupled Model Intercomparison Project (CMIP3) for the period 2030–2070 were used in this study. Climate scenarios included combinations of four changes in air temperature (08C, 18C, 28C, and 38C), three [CO2] levels (380 ppm, 500 ppm, and 600 ppm), and three changes in rainfall (–30%, 0%, and +20%), which were superimposed on observed station data. Crop management scenarios included a combination of six sowing dates (1 May, 10 May, 20 May, 1 June, 10 June, and 20 June) and three irrigation regimes (no irrigation (NI), deficit irrigation (DI), and full irrigation (FI)). Simulations were performed with the model DSSAT4.5, using 50 years of daily weather data.Wefound that: (1) grain yield and water-use efficiency (yield/evapotranspiration) increased linearly with [CO2]; (2) increases in [CO2] had minimal impact on evapotranspiration; (3) yield increased with increasing temperature for the irrigated scenarios (DI and FI), but decreased for the NI scenario; (4) yield increased with earlier sowing dates; and (5) changes in rainfall had a small impact on yield for DI and FI, but a high impact for the NI scenario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agricultural soils emit about 50% of the global flux of N2O attributable to human influence, mostly in response to nitrogen fertilizer use. Recent evidence that the relationship between N2O fluxes and N-fertilizer additions to cereal maize are non-linear provides an opportunity to estimate regional N2O fluxes based on estimates of N application rates rather than as a simple percentage of N inputs as used by the Intergovernmental Panel on Climate Change (IPCC). We combined a simple empirical model of N2O production with the SOCRATES soil carbon dynamics model to estimate N2O and other sources of Global Warming Potential (GWP) from cereal maize across 19,000 cropland polygons in the North Central Region (NCR) of the US over the period 1964–2005. Results indicate that the loading of greenhouse gases to the atmosphere from cereal maize production in the NCR was 1.7 Gt CO2e, with an average 268 t CO2e produced per tonne of grain. From 1970 until 2005, GHG emissions per unit product declined on average by 2.8 t CO2e ha−1 annum−1, coinciding with a stabilisation in N application rate and consistent increases in grain yield from the mid-1970’s. Nitrous oxide production from N fertilizer inputs represented 59% of these emissions, soil C decline (0–30 cm) represented 11% of total emissions, with the remaining 30% (517 Mt) from the combustion of fuel associated with farm operations. Of the 126 Mt of N fertilizer applied to cereal maize from 1964 to 2005, we estimate that 2.2 Mt N was emitted as N2O when using a non-linear response model, equivalent to 1.75% of the applied N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term structure of interest rates is often summarized using a handful of yield factors that capture shifts in the shape of the yield curve. In this paper, we develop a comprehensive model for volatility dynamics in the level, slope, and curvature of the yield curve that simultaneously includes level and GARCH effects along with regime shifts. We show that the level of the short rate is useful in modeling the volatility of the three yield factors and that there are significant GARCH effects present even after including a level effect. Further, we find that allowing for regime shifts in the factor volatilities dramatically improves the model’s fit and strengthens the level effect. We also show that a regime-switching model with level and GARCH effects provides the best out-of-sample forecasting performance of yield volatility. We argue that the auxiliary models often used to estimate term structure models with simulation-based estimation techniques should be consistent with the main features of the yield curve that are identified by our model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Greenhouse gas markets, where invisible gases are traded, must seem like black boxes to most people. Farmers can make money on these markets, such as the Chicago Climate Exchange, by installing methane capture technologies in animal-based systems, no-till farming, establishing grasslands, and planting trees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium alloys are attracting increasing research interests due to their low density, high specific strength and good mechineability and availability as compared to other structural materials. However, the deformation and failure mechanisms of nanocrystalline Mg alloys have not been well understood. In this work, the deformation behavior of nanocrystalline Mg-5% Al alloys was investigated using compression test, with a focus on the effects of grain size. The average grain size of the Mg-Al alloy was changed from 13 µm to 50 nm via mechanical milling. The results showed that grain size had a significant influence on the yield stress and ductility of the Mg alloys, and the materials exhibited increased strain rate sensitivity with decrease of grain size. The deformation mechanisms were also strongly dependent with the grain sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsaturated soil mechanics is receiving increasing attention from researchers and as well as from practicing engineers. However, the requirement of sophisticated devices to measure unsaturated soil properties and time consumption have made the geotechnical engineers keep away from implication of the unsaturated soil mechanics for solving practical geotechnical problems. The application of the conventional laboratory devices with some modifications to measure unsaturated soil properties can promote the application of unsaturated soil mechanics into engineering practice. Therefore, in the present study, a conventional direct shear device was modified to measure unsaturated shear strength parameters at low suction. Specially, for the analysis of rain-induced slope failures, it is important to measure unsaturated shear strength parameters at low suction where slopes become unstable. The modified device was used to measure unsaturated shear strength of two silty soils at low suction values (0 ~ 50 kPa) that were achieved by following drying path and wetting path of soil-water characteristic curves (SWCCs) of soils. The results revealed that the internal friction angle of soil was not significantly affected by the suction and as well as the drying-wetting SWCCs of soils. The apparent cohesion of soil increased with a decreasing rate as the suction increased. Further, the apparent cohesion obtained from soil in wetting was greater than that obtained from soil in drying. Shear stress-shear displacement curves obtained from soil specimens subjected to the same net normal stress and different suction values showed a higher initial stiffness and a greater peak stress as the suction increased. In addition, it was observed that soil became more dilative with the increase of suction. A soil in wetting exhibited slightly higher peak shear stress and more contractive volume change behaviour than that of in drying at the same net normal stress and the suction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accumulation and perpetuation of viral pathogens over generations of clonal propagation in crop species such as sweet potato, Ipomoea batatas,inevitably result in a reduction in crop yield and quality. This study was conducted at Bundaberg, Australia to compare the productivity of field-derived and pathogen-tested (PT)clones of 14 sweet potato cultivars and the yield benefits of using healthy planting materials. The field-derived clonal materials were exposed to the endemic viruses, while the PT clones were subjected to thermotherapy and meristem-tip culture to eliminate viral pathogens. The plants were indexed for viruses using nitrocellulose membrane-enzyme-linked immunosorbent assay and graft-inoculations onto Ipomoea setosa. A net benefit of 38% in storage root yield was realised from using PT materials in this study.Conversely, in a similar study previously conducted at Kerevat, Papua New Guinea (PNG), a net deficit of 36% was realised. This reinforced our finding that the response to pathogen testing was cultivar dependent and that the PNG cultivars in these studies generally exhibited increased tolerance to the endemic viruses present at the respective trial sites as manifested in their lack of response from the use of PT clones. They may be useful sources for future resistance breeding efforts. Nonetheless, the potential economic gain from using PT stocks necessitates the use of pathogen testing on virus-susceptible commercial cultivars.