548 resultados para gossip, dissemination, network, algorithms

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rule extraction from neural network algorithms have been investigated for two decades and there have been significant applications. Despite this level of success, rule extraction from neural network methods are generally not part of data mining tools, and a significant commercial breakthrough may still be some time away. This paper briefly reviews the state-of-the-art and points to some of the obstacles, namely a lack of evaluation techniques in experiments and larger benchmark data sets. A significant new development is the view that rule extraction from neural networks is an interactive process which actively involves the user. This leads to the application of assessment and evaluation techniques from information retrieval which may lead to a range of new methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vehicular ad hoc network (VANET) is a wireless ad hoc network that operates in a vehicular environment to provide communication between vehicles. VANET can be used by a diverse range of applications to improve road safety. Cooperative collision warning system (CCWS) is one of the safety applications that can provide situational awareness and warning to drivers by exchanging safety messages between cooperative vehicles. Currently, the routing strategies for safety message dissemination in CCWS are scoped broadcast. However, the broadcast schemes are not efficient as a warning message is sent to a large number of vehicles in the area, rather than only the endangered vehicles. They also cannot prioritize the receivers based on their critical time to avoid collision. This paper presents a more efficient multicast routing scheme that can reduce unnecessary transmissions and also use adaptive transmission range. The multicast scheme involves methods to identify an abnormal vehicle, the vehicles that may be endangered by the abnormal vehicle, and the latest time for each endangered vehicle to receive the warning message in order to avoid the danger. We transform this multicast routing problem into a delay-constrained minimum Steiner tree problem. Therefore, we can use existing algorithms to solve the problem. The advantages of our multicast routing scheme are mainly its potential to support various road traffic scenarios, to optimize the wireless channel utilization, and to prioritize the receivers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As connectivity analyses become more popular, claims are often made about how the brain's anatomical networks depend on age, sex, or disease. It is unclear how results depend on tractography methods used to compute fiber networks. We applied 11 tractography methods to high angular resolution diffusion images of the brain (4-Tesla 105-gradient HARDI) from 536 healthy young adults. We parcellated 70 cortical regions, yielding 70×70 connectivity matrices, encoding fiber density. We computed popular graph theory metrics, including network efficiency, and characteristic path lengths. Both metrics were robust to the number of spherical harmonics used to model diffusion (4th-8th order). Age effects were detected only for networks computed with the probabilistic Hough transform method, which excludes smaller fibers. Sex and total brain volume affected networks measured with deterministic, tensor-based fiber tracking but not with the Hough method. Each tractography method includes different fibers, which affects inferences made about the reconstructed networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-Time Kinematic (RTK) positioning is a technique used to provide precise positioning services at centimetre accuracy level in the context of Global Navigation Satellite Systems (GNSS). While a Network-based RTK (N-RTK) system involves multiple continuously operating reference stations (CORS), the simplest form of a NRTK system is a single-base RTK. In Australia there are several NRTK services operating in different states and over 1000 single-base RTK systems to support precise positioning applications for surveying, mining, agriculture, and civil construction in regional areas. Additionally, future generation GNSS constellations, including modernised GPS, Galileo, GLONASS, and Compass, with multiple frequencies have been either developed or will become fully operational in the next decade. A trend of future development of RTK systems is to make use of various isolated operating network and single-base RTK systems and multiple GNSS constellations for extended service coverage and improved performance. Several computational challenges have been identified for future NRTK services including: • Multiple GNSS constellations and multiple frequencies • Large scale, wide area NRTK services with a network of networks • Complex computation algorithms and processes • Greater part of positioning processes shifting from user end to network centre with the ability to cope with hundreds of simultaneous users’ requests (reverse RTK) There are two major requirements for NRTK data processing based on the four challenges faced by future NRTK systems, expandable computing power and scalable data sharing/transferring capability. This research explores new approaches to address these future NRTK challenges and requirements using the Grid Computing facility, in particular for large data processing burdens and complex computation algorithms. A Grid Computing based NRTK framework is proposed in this research, which is a layered framework consisting of: 1) Client layer with the form of Grid portal; 2) Service layer; 3) Execution layer. The user’s request is passed through these layers, and scheduled to different Grid nodes in the network infrastructure. A proof-of-concept demonstration for the proposed framework is performed in a five-node Grid environment at QUT and also Grid Australia. The Networked Transport of RTCM via Internet Protocol (Ntrip) open source software is adopted to download real-time RTCM data from multiple reference stations through the Internet, followed by job scheduling and simplified RTK computing. The system performance has been analysed and the results have preliminarily demonstrated the concepts and functionality of the new NRTK framework based on Grid Computing, whilst some aspects of the performance of the system are yet to be improved in future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This approach to sustainable design explores the possibility of creating an architectural design process which can iteratively produce optimised and sustainable design solutions. Driven by an evolution process based on genetic algorithms, the system allows the designer to “design the building design generator” rather than to “designs the building”. The design concept is abstracted into a digital design schema, which allows transfer of the human creative vision into the rational language of a computer. The schema is then elaborated into the use of genetic algorithms to evolve innovative, performative and sustainable design solutions. The prioritisation of the project’s constraints and the subsequent design solutions synthesised during design generation are expected to resolve most of the major conflicts in the evaluation and optimisation phases. Mosques are used as the example building typology to ground the research activity. The spatial organisations of various mosque typologies are graphically represented by adjacency constraints between spaces. Each configuration is represented by a planar graph which is then translated into a non-orthogonal dual graph and fed into the genetic algorithm system with fixed constraints and expected performance criteria set to govern evolution. The resultant Hierarchical Evolutionary Algorithmic Design System is developed by linking the evaluation process with environmental assessment tools to rank the candidate designs. The proposed system generates the concept, the seed, and the schema, and has environmental performance as one of the main criteria in driving optimisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a sensor network deployment method using autonomous flying robots. Such networks are suitable for tasks such as large-scale environmental monitoring or for command and control in emergency situations. We describe in detail the algorithms used for deployment and for measuring network connectivity and provide experimental data we collected from field trials. A particular focus is on determining gaps in connectivity of the deployed network and generating a plan for a second, repair, pass to complete the connectivity. This project is the result of a collaboration between three robotics labs (CSIRO, USC, and Dartmouth.).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates a mobile, wireless sensor/actuator network application for use in the cattle breeding industry. Our goal is to prevent fighting between bulls in on-farm breeding paddocks by autonomously applying appropriate stimuli when one bull approaches another bull. This is an important application because fighting between high-value animals such as bulls during breeding seasons causes significant financial loss to producers. Furthermore, there are significant challenges in this type of application because it requires dynamic animal state estimation, real-time actuation and efficient mobile wireless transmissions. We designed and implemented an animal state estimation algorithm based on a state-machine mechanism for each animal. Autonomous actuation is performed based on the estimated states of an animal relative to other animals. A simple, yet effective, wireless communication model has been proposed and implemented to achieve high delivery rates in mobile environments. We evaluated the performance of our design by both simulations and field experiments, which demonstrated the effectiveness of our autonomous animal control system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is increasingly understood that learning and thus innovation often occurs via highly interactive, iterative, network-based processes. Simultaneously, economic development policy is increasingly focused on small and medium-sized enterprises (SMEs) as a means of generating growth, creating a clear research issue in terms of the roles and interactions of government policy, universities, and other sources of knowledge, SMEs, and the creation and dissemination of innovation. This paper analyses the contribution of a range of actors in an SME innovation creation and dissemination framework, reviewing the role of various institutions therein, exploring the contribution of cross-locality networks, and identifying the mechanisms required to operationalise such a framework. Bivariate and multivariate (regression) techniques are employed to investigate both innovation and growth outcomes in relation to these structures; data are derived from the survey responses of over 450 SMEs in the UK. Results are complex and dependent upon the nature of institutions involved, the type of knowledge sought, and the spatial level of the linkages in place but overall highlight the value of cross-locality networks, network governance structures, and certain spillover effects from universities. In general, we find less support for the factors predicting SME growth outcomes than is the case for innovation. Finally, we outline an agenda for further research in the area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Streaming SIMD Extensions (SSE) is a unique feature embedded in the Pentium III class of microprocessors. By fully exploiting SSE, parallel algorithms can be implemented on a standard personal computer and a theoretical speedup of four can be achieved. In this paper, we demonstrate the implementation of a parallel LU matrix decomposition algorithm for solving power systems network equations with SSE and discuss advantages and disadvantages of this approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Streaming SIMD extension (SSE) is a special feature that is available in the Intel Pentium III and P4 classes of microprocessors. As its name implies, SSE enables the execution of SIMD (Single Instruction Multiple Data) operations upon 32-bit floating-point data therefore, performance of floating-point algorithms can be improved. In electrified railway system simulation, the computation involves the solving of a huge set of simultaneous linear equations, which represent the electrical characteristic of the railway network at a particular time-step and a fast solution for the equations is desirable in order to simulate the system in real-time. In this paper, we present how SSE is being applied to the railway network simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future air traffic management concepts often involve the proposal of automated separation management algorithms that replaces human air traffic controllers. This paper proposes a new type of automated separation management algorithm (based on the satisficing approach) that utilizes inter-aircraft communication and a track file manager (or bank of Kalman filters) that is capable of resolving conflicts during periods of communication failure. The proposed separation management algorithm is tested in a range of flight scenarios involving during periods of communication failure, in both simulation and flight test (flight tests were conducted as part of the Smart Skies project). The intention of the conducted flight tests was to investigate the benefits of using inter-aircraft communication to provide an extra layer of safety protection in support air traffic management during periods of failure of the communication network. These benefits were confirmed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This important work describes recent theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Chapters survey research on pattern classification with binary-output networks, including a discussion of the relevance of the Vapnik Chervonenkis dimension, and of estimates of the dimension for several neural network models. In addition, Anthony and Bartlett develop a model of classification by real-output networks, and demonstrate the usefulness of classification with a "large margin." The authors explain the role of scale-sensitive versions of the Vapnik Chervonenkis dimension in large margin classification, and in real prediction. Key chapters also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient, constructive learning algorithms. The book is self-contained and accessible to researchers and graduate students in computer science, engineering, and mathematics