268 resultados para geometric docking

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the development and preliminary experimental evaluation of a visionbased docking system to allow an Autonomous Underwater Vehicle (AUV) to identify and attach itself to a set of uniquely identifiable targets. These targets, docking poles, are detected using Haar rectangular features and rotation of integral images. A non-holonomic controller allows the Starbug AUV to orient itself with respect to the target whilst maintaining visual contact during the manoeuvre. Experimental results show the proposed vision system is capable of robustly identifying a pair of docking poles simultaneously in a variety of orientations and lighting conditions. Experiments in an outdoor pool show that this vision system enables the AUV to dock autonomously from a distance of up to 4m with relatively low visibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a control strategy design technique for an autonomous underwater vehicle based on solutions to the motion planning problem derived from differential geometric methods. The motion planning problem is motivated by the practical application of surveying the hull of a ship for implications of harbor and port security. In recent years, engineers and researchers have been collaborating on automating ship hull inspections by employing autonomous vehicles. Despite the progresses made, human intervention is still necessary at this stage. To increase the functionality of these autonomous systems, we focus on developing model-based control strategies for the survey missions around challenging regions, such as the bulbous bow region of a ship. Recent advances in differential geometry have given rise to the field of geometric control theory. This has proven to be an effective framework for control strategy design for mechanical systems, and has recently been extended to applications for underwater vehicles. Advantages of geometric control theory include the exploitation of symmetries and nonlinearities inherent to the system. Here, we examine the posed inspection problem from a path planning viewpoint, applying recently developed techniques from the field of differential geometric control theory to design the control strategies that steer the vehicle along the prescribed path. Three potential scenarios for surveying a ship?s bulbous bow region are motivated for path planning applications. For each scenario, we compute the control strategy and implement it onto a test-bed vehicle. Experimental results are analyzed and compared with theoretical predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper serves as a first study on the implementation of control strategies developed using a kinematic reduction onto test bed autonomous underwater vehicles (AUVs). The equations of motion are presented in the framework of differential geometry, including external dissipative forces, as a forced affine connection control system. We show that the hydrodynamic drag forces can be included in the affine connection, resulting in an affine connection control system. The definitions of kinematic reduction and decoupling vector field are thus extended from the ideal fluid scenario. Control strategies are computed using this new extension and are reformulated for implementation onto a test-bed AUV. We compare these geometrically computed controls to time and energy optimal controls for the same trajectory which are computed using a previously developed algorithm. Through this comparison we are able to validate our theoretical results based on the experiments conducted using the time and energy efficient strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is based on theoretical study and experiments which extend geometric control theory to practical applications within the field of ocean engineering. We present a method for path planning and control design for underwater vehicles by use of the architecture of differential geometry. In addition to the theoretical design of the trajectory and control strategy, we demonstrate the effectiveness of the method via the implementation onto a test-bed autonomous underwater vehicle. Bridging the gap between theory and application is the ultimate goal of control theory. Major developments have occurred recently in the field of geometric control which narrow this gap and which promote research linking theory and application. In particular, Riemannian and affine differential geometry have proven to be a very effective approach to the modeling of mechanical systems such as underwater vehicles. In this framework, the application of a kinematic reduction allows us to calculate control strategies for fully and under-actuated vehicles via kinematic decoupled motion planning. However, this method has not yet been extended to account for external forces such as dissipative viscous drag and buoyancy induced potentials acting on a submerged vehicle. To fully bridge the gap between theory and application, this dissertation addresses the extension of this geometric control design method to include such forces. We incorporate the hydrodynamic drag experienced by the vehicle by modifying the Levi-Civita affine connection and demonstrate a method for the compensation of potential forces experienced during a prescribed motion. We present the design method for multiple different missions and include experimental results which validate both the extension of the theory and the ability to implement control strategies designed through the use of geometric techniques. By use of the extension presented in this dissertation, the underwater vehicle application successfully demonstrates the applicability of geometric methods to design implementable motion planning solutions for complex mechanical systems having equal or fewer input forces than available degrees of freedom. Thus, we provide another tool with which to further increase the autonomy of underwater vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we analyze the equations of motion of a submerged rigid body. Our motivation is based on recent developments done in trajectory design for this problem. Our goal is to relate some properties of singular extremals to the existence of decoupling vector fields. The ideas displayed in this paper can be viewed as a starting point to a geometric formulation of the trajectory design problem for mechanical systems with potential and external forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydraulic excavators in the mining industry are widely used owing to the large payload capabilities these machines can achieve. However, there are very few optimisation studies for producing efficient hydraulic excavator backets. An efficient bucket can avoid unnecessary weight; greatly influence the payload and optimise the efficiency of hydraulic mining excavators. This paper presents a framework for the development of a scaled hydraulic excavator by examining the geometry and force relationships. A small hydraulic excavator was purchased and fitted with a broom scaled to a factor. Geometric and force relationships of the model were derived to assist computer instrumentation to retrieve necessary variable input for bucket design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How do humans respond to their social context? This question is becoming increasingly urgent in a society where democracy requires that the citizens of a country help to decide upon its policy directions, and yet those citizens frequently have very little knowledge of the complex issues that these policies seek to address. Frequently, we find that humans make their decisions more with reference to their social setting, than to the arguments of scientists, academics, and policy makers. It is broadly anticipated that the agent based modelling (ABM) of human behaviour will make it possible to treat such social effects, but we take the position here that a more sophisticated treatment of context will be required in many such models. While notions such as historical context (where the past history of an agent might affect its later actions) and situational context (where the agent will choose a different action in a different situation) abound in ABM scenarios, we will discuss a case of a potentially changing context, where social effects can have a strong influence upon the perceptions of a group of subjects. In particular, we shall discuss a recently reported case where a biased worm in an election debate led to significant distortions in the reports given by participants as to who won the debate (Davis et al 2011). Thus, participants in a different social context drew different conclusions about the perceived winner of the same debate, with associated significant differences among the two groups as to who they would vote for in the coming election. We extend this example to the problem of modelling the likely electoral responses of agents in the context of the climate change debate, and discuss the notion of interference between related questions that might be asked of an agent in a social simulation that was intended to simulate their likely responses. A modelling technology which could account for such strong social contextual effects would benefit regulatory bodies which need to navigate between multiple interests and concerns, and we shall present one viable avenue for constructing such a technology. A geometric approach will be presented, where the internal state of an agent is represented in a vector space, and their social context is naturally modelled as a set of basis states that are chosen with reference to the problem space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate and efficient thermal-infrared (IR) camera calibration is important for advancing computer vision research within the thermal modality. This paper presents an approach for geometrically calibrating individual and multiple cameras in both the thermal and visible modalities. The proposed technique can be used to correct for lens distortion and to simultaneously reference both visible and thermal-IR cameras to a single coordinate frame. The most popular existing approach for the geometric calibration of thermal cameras uses a printed chessboard heated by a flood lamp and is comparatively inaccurate and difficult to execute. Additionally, software toolkits provided for calibration either are unsuitable for this task or require substantial manual intervention. A new geometric mask with high thermal contrast and not requiring a flood lamp is presented as an alternative calibration pattern. Calibration points on the pattern are then accurately located using a clustering-based algorithm which utilizes the maximally stable extremal region detector. This algorithm is integrated into an automatic end-to-end system for calibrating single or multiple cameras. The evaluation shows that using the proposed mask achieves a mean reprojection error up to 78% lower than that using a heated chessboard. The effectiveness of the approach is further demonstrated by using it to calibrate two multiple-camera multiple-modality setups. Source code and binaries for the developed software are provided on the project Web site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a version of the Keller–Segel model for bacterial chemotaxis, for which exact travelling wave solutions are explicitly known in the zero attractant diffusion limit. Using geometric singular perturbation theory, we construct travelling wave solutions in the small diffusion case that converge to these exact solutions in the singular limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the development of a novel vision-based autonomous surface vehicle with the purpose of performing coordinated docking manoeuvres with a target, such as an autonomous underwater vehicle, at the water's surface. The system architecture integrates two small processor units; the first performs vehicle control and implements a virtual force based docking strategy, with the second performing vision-based target segmentation and tracking. Furthermore, the architecture utilises wireless sensor network technology allowing the vehicle to be observed by, and even integrated within an ad-hoc sensor network. Simulated and experimental results are presented demonstrating the autonomous vision- based docking strategy on a proof-of-concept vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software to create individualised finite element (FE) models of the osseoligamentous spine using pre-operative computed tomography (CT) data-sets for spinal surgery patients has recently been developed. This study presents a geometric sensitivity analysis of this software to assess the effect of intra-observer variability in user-selected anatomical landmarks. User-selected landmarks on the osseous anatomy were defined from CT data-sets for three scoliosis patients and these landmarks were used to reconstruct patient-specific anatomy of the spine and ribcage using parametric descriptions. The intra-observer errors in landmark co-ordinates for these anatomical landmarks were calculated. FE models of the spine and ribcage were created using the reconstructed anatomy for each patient and these models were analysed for a loadcase simulating clinical flexibility assessment. The intra-observer error in the anatomical measurements was low in comparison to the initial dimensions, with the exception of the angular measurements for disc wedge and zygapophyseal joint (z-joint) orientation and disc height. This variability suggested that CT resolution may influence such angular measurements, particularly for small anatomical features, such as the z-joints, and may also affect disc height. The results of the FE analysis showed low variation in the model predictions for spinal curvature with the mean intra-observer variability substantially less than the accepted error in clinical measurement. These findings demonstrate that intra-observer variability in landmark point selection has minimal effect on the subsequent FE predictions for a clinical loadcase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The invasion of human malignant melanoma cells into the extracellular matrix (ECM) involves the accumulation of proteases at sites of ECM degradation where activation of matrix metalloproteases (MMP) occurs. Here, we show that when membrane type 1 MMP (MT-MMP) was overexpressed in RPMI7951 human melanoma cells, the cells made contact with the ECM, activated soluble and ECM-bound MMP-2, and degraded and invaded the ECM. Further experiments demonstrated the importance of localization of the MT-MMP to invadopodia. Overexpression of MT-MMP without invadopodial localization caused activation of soluble MMP-2, but did not facilitate ECM degradation or cell invasiveness. Up-regulation of endogenous MT-MMP with concanavalin A caused activation of MMP-2. However, concanavalin A treatment prevented invadopodial localization of MT-MMP and ECM degradation. Neither a truncated MT-MMP mutant lacking transmembrane (TM) and cytoplasmic domains (ΔTM(MT-MMP)), nor a chimeric MT-MMP containing the interleukin 2 receptor α chain (IL-2R) TM and cytoplasmic domains (ΔTM(MT-MMP)/TM(IL-2R)) were localized to invadopodia or exhibited ECM degradation. Furthermore, a chimera of the TM/cytoplasmic domain of MT-MMP (TM(MT-MMP)) with tissue inhibitor of MMP 1 (TIMP-1/TM(MT- MMP)) directed the TIMP-1 molecule to invadopodia. Thus, the MT-MMP TM/cytoplasmic domain mediates the spatial organization of MT-MMP into invadopodia and subsequent degradation of the ECM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses of the advanced computational technique of steel structures for both simulation capacities simultaneously; specifically, they are the higher-order element formulation with element load effect (geometric nonlinearities) as well as the refined plastic hinge method (material nonlinearities). This advanced computational technique can capture the real behaviour of a whole second-order inelastic structure, which in turn ensures the structural safety and adequacy of the structure. Therefore, the emphasis of this paper is to advocate that the advanced computational technique can replace the traditional empirical design approach. In the meantime, the practitioner should be educated how to make use of the advanced computational technique on the second-order inelastic design of a structure, as this approach is the future structural engineering design. It means the future engineer should understand the computational technique clearly; realize the behaviour of a structure with respect to the numerical analysis thoroughly; justify the numerical result correctly; especially the fool-proof ultimate finite element is yet to come, of which is competent in modelling behaviour, user-friendly in numerical modelling and versatile for all structural forms and various materials. Hence the high-quality engineer is required, who can confidently manipulate the advanced computational technique for the design of a complex structure but not vice versa.