389 resultados para fuel Cell.
em Queensland University of Technology - ePrints Archive
Resumo:
This paper presents a new simplified parametric analysis technique for the design of fuel cell and hybrid-electric vehicles. The technique utilizes a comprehensive set of ∼30 parameters to fully characterize the vehicle platform, powertrain components, vehicle performance requirements and driving conditions. It is best applied to the sizing of powertrain components and prediction of energy consumption in a vehicle. This new parametric technique makes a good complement to existing vehicle simulation software packages and therefore represents a potentially valuable tool for the hybrid vehicle designer.
Superactivation of metal electrode surfaces and its relevance to COads oxidation at fuel cell anodes
Resumo:
The inhibiting effect of COads on platinum-based anodes is a major problem in the development of ambient temperature, polyelectrolyte membrane-type fuel cells. One of the unusual features of the response for the oxidative removal of the species in question is that the response observed for this reaction in the positive sweep is highly dependent on the CO admission potential, for example, when the COads is formed in the Hads region it undergoes oxidation at unusually low potentials. Such behaviour is attributed here to hydrogen activation of the platinum surface, with the result that oxide mediators (and COads oxidation) occurs at an earlier stage of the positive sweep. It is also demonstrated, for both platinum and gold in acid solution, that dramatic premonolayer oxidation responses may be observed following suitable preactivation of the electrode surfaces. It is suggested that the defect state of a solid electrode surface is an important variable whose investigation may yield improved fuel cell anode performance.
Resumo:
This report describes a methodology for the design and coupling of a proton exchange membrane (PEM) Fuel Cell to an Unmanned Aerial Vehicle (UAV). The report summarizes existing work in the field, the type of UAV and the mission requirements, design the fuel cell system, simulation environment, and compares endurance and range to when the aircraft is fitted with a conventional internal combustion engine (ICE).
Resumo:
Although BaZr 0.8Y 0.2O 3-δ(BZY) possesses large bulk proton conductivity and excellent chemical stability, its poor sinterability and grain boundaries block proton conduction. In this work, the effect of Ca as a co-dopant and as a sintering aid (as CaO), on the sinterability, proton conductivity, and fuel cell performance of BZY was investigated. The addition of 4 mol% CaO significantly improved the BZY sinterability: BZY pellets with densities of 92.7% and 97.5% with respect to the theoretical density were obtained after sintering at 1500°C and 1600°C, respectively. The improved BZY sinterability by CaO addition resulted also in a large proton conductivity; at 600°C, the total conductivity of BZY-CaO was 2.14 × 10 -3 S/cm, in wet Ar. Anode-supported fuel cells with 25 μm-thick BZY-CaO electrolyte membranes were fabricated by a dual-layer co-firing technique. The peak power density of the fuel cell with a BZY-Ni/BZY-4CaO/BZY-LSCF (La 0.6Sr 0.4Fe 0.8Co 0.2O 3-δ) configuration was 141 mW/cm 2 at 700°C, several times larger than the reported values of BZY electrolyte membrane fuel cells sintered with the addition of CuO or ZnO, demonstrating promising features for practical fuel cell applications.
Resumo:
A novel sintering additive based on LiNO3 was used to overcome the drawbacks of poor sinterability and low grain boundary conductivity in BaZr0.8Y0.2O3-δ (BZY20) protonic conductors. The Li-additive totally evaporated during the sintering process at 1600°C for 6 h, which led to highly dense BZY20 pellets (96.5% of the theoretical value). The proton conductivity values of BZY20 with Li sintering-aid were significantly larger than the values reported for BZY sintered with other metal oxides, due to the fast proton transport in the "clean" grain boundaries and grain interior. The total conductivity of BZY20-Li in wet Ar was 4.45 × 10-3 S cm-1 at 600°C. Based on the improved sinterability, anode-supported fuel cells with 25 μm-thick BZY20-Li electrolyte membranes were fabricated by a co-firing technique. The peak power density obtained at 700°C for a BZY-Ni/BZY20-Li/La0.6Sr0.4Co0.2Fe 0.8O3-δ (LSCF)-BZY cell was 53 mW cm-2, which is significantly larger than the values reported for fuel cells using electrolytes made of BZY sintered with the addition of ZnO and CuO, confirming the advantage of using Li as a sintering aid.
Resumo:
The difficult sintering of BaZr0.8Y0.2O 3-δ (BZY20) powders makes the fabrication of anode-supported BZY20 electrolyte films complex. Dense BZY20 membranes were successfully fabricated on anode substrates made of sinteractive NiO-BZY20 powders, prepared by a combustion method. With respect to traditional anode substrates made of powders prepared by mechanical mixing, the anode substrates made of the wet-chemically synthesized composite NiO-BZY20 powders significantly promoted the densification of BZY20 membranes: dense BZY20 films were obtained after co-pressing and co-firing at 1300 °C, a much lower temperature than those usually needed for densifying BZY20 membranes. Improved electrochemical performance was also observed: the supported BZY20 films maintained a high proton conductivity, up to 5.4 × 10-3 S cm-1 at 700 °C. Moreover, an anode-supported fuel cell with a 30 m thick BZY20 electrolyte film fabricated at 1400 °C on the anode made of the wet-chemically synthesized NiO-BZY20 powder showed a peak power density of 172 mW cm-2 at 700 °C, using La0.6Sr0.4Co 0.2Fe0.8O3-δ-BaZr0.7Y 0.2Pr0.1O3-δ as the cathode material, with a remarkable performance for proton-conducting solid oxide fuel cell (SOFC) applications.
Resumo:
In3+ was used as dopant for BaZrO3 proton conductor and 30 at%-doped BaZrO3 samples (BaZr0.7In 0.3O3-δ, BZI) were prepared as electrolyte materials for proton-conducting solid oxide fuel cells (SOFCs). The BZI material showed a much improved sinteractivity compared with the conventional Y-doped BaZrO 3. The BZI pellets reached almost full density after sintering at 1600 °C for 10 h, whereas the Y-doped BaZrO3 samples still remained porous under the same sintering conditions. The conductivity measurements indicated that BZI pellets showed smaller bulk but improved grain boundary proton conductivity, when compared with Y-doped BaZrO3 samples. A total proton conductivity of 1.7 × 10-3 S cm -1 was obtained for the BZI sample at 700 °C in wet 10% H 2 atmosphere. The BZI electrolyte material also showed adequate chemical stability against CO2 and H2O, which is promising for application in fuel cells.
Resumo:
Prior evidence from the fields of innovation management and supplier relations predicts that Japanese firms should be naturally disadvantaged in developing and deploying radical innovations. But this conclusion is inconsistent with recent developments in the automotive industry. This paper presents secondary case study data focusing on fuel cell powered vehicles and hybrid cars to show that Toyota, one of Japan's largest and most influential corporations, is capable of developing radically new technologies, and is in several respects better at this sort of innovation than the rest of the global automotive industry.
Resumo:
The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of seven published/submitted papers, of which one has been published, three accepted for publication and the other three are under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of proposing strategies for the performance control of Distributed Generation (DG) system with digital estimation of power system signal parameters. Distributed Generation (DG) has been recently introduced as a new concept for the generation of power and the enhancement of conventionally produced electricity. Global warming issue calls for renewable energy resources in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cell and micro turbine will gain substantial momentum in the near future. Technically, DG can be a viable solution for the issue of the integration of renewable or non-conventional energy resources. Basically, DG sources can be connected to local power system through power electronic devices, i.e. inverters or ac-ac converters. The interconnection of DG systems to power system as a compensator or a power source with high quality performance is the main aim of this study. Source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, distortion at the point of common coupling in weak source cases, source current power factor, and synchronism of generated currents or voltages are the issues of concern. The interconnection of DG sources shall be carried out by using power electronics switching devices that inject high frequency components rather than the desired current. Also, noise and harmonic distortions can impact the performance of the control strategies. To be able to mitigate the negative effect of high frequency and harmonic as well as noise distortion to achieve satisfactory performance of DG systems, new methods of signal parameter estimation have been proposed in this thesis. These methods are based on processing the digital samples of power system signals. Thus, proposing advanced techniques for the digital estimation of signal parameters and methods for the generation of DG reference currents using the estimates provided is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. One of the main parameters of a power system signal is its frequency. Phasor Measurement (PM) technique is one of the renowned and advanced techniques used for the estimation of power system frequency. Chapter 2 focuses on an in-depth analysis conducted on the PM technique to reveal its strengths and drawbacks. The analysis will be followed by a new technique proposed to enhance the speed of the PM technique while the input signal is free of even-order harmonics. The other techniques proposed in this thesis as the novel ones will be compared with the PM technique comprehensively studied in Chapter 2. An algorithm based on the concept of Kalman filtering is proposed in Chapter 3. The algorithm is intended to estimate signal parameters like amplitude, frequency and phase angle in the online mode. The Kalman filter is modified to operate on the output signal of a Finite Impulse Response (FIR) filter designed by a plain summation. The frequency estimation unit is independent from the Kalman filter and uses the samples refined by the FIR filter. The frequency estimated is given to the Kalman filter to be used in building the transition matrices. The initial settings for the modified Kalman filter are obtained through a trial and error exercise. Another algorithm again based on the concept of Kalman filtering is proposed in Chapter 4 for the estimation of signal parameters. The Kalman filter is also modified to operate on the output signal of the same FIR filter explained above. Nevertheless, the frequency estimation unit, unlike the one proposed in Chapter 3, is not segregated and it interacts with the Kalman filter. The frequency estimated is given to the Kalman filter and other parameters such as the amplitudes and phase angles estimated by the Kalman filter is taken to the frequency estimation unit. Chapter 5 proposes another algorithm based on the concept of Kalman filtering. This time, the state parameters are obtained through matrix arrangements where the noise level is reduced on the sample vector. The purified state vector is used to obtain a new measurement vector for a basic Kalman filter applied. The Kalman filter used has similar structure to a basic Kalman filter except the initial settings are computed through an extensive math-work with regards to the matrix arrangement utilized. Chapter 6 proposes another algorithm based on the concept of Kalman filtering similar to that of Chapter 3. However, this time the initial settings required for the better performance of the modified Kalman filter are calculated instead of being guessed by trial and error exercises. The simulations results for the parameters of signal estimated are enhanced due to the correct settings applied. Moreover, an enhanced Least Error Square (LES) technique is proposed to take on the estimation when a critical transient is detected in the input signal. In fact, some large, sudden changes in the parameters of the signal at these critical transients are not very well tracked by Kalman filtering. However, the proposed LES technique is found to be much faster in tracking these changes. Therefore, an appropriate combination of the LES and modified Kalman filtering is proposed in Chapter 6. Also, this time the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 7 proposes the other algorithm based on the concept of Kalman filtering similar to those of Chapter 3 and 6. However, this time an optimal digital filter is designed instead of the simple summation FIR filter. New initial settings for the modified Kalman filter are calculated based on the coefficients of the digital filter applied. Also, the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 8 uses the estimation algorithm proposed in Chapter 7 for the interconnection scheme of a DG to power network. Robust estimates of the signal amplitudes and phase angles obtained by the estimation approach are used in the reference generation of the compensation scheme. Several simulation tests provided in this chapter show that the proposed scheme can very well handle the source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, and synchronism of generated currents or voltages. The purposed compensation scheme also prevents distortion in voltage at the point of common coupling in weak source cases, balances the source currents, and makes the supply side power factor a desired value.
Resumo:
A method of producing particles having nano-sized grains comprises the steps of: (a) prepg. a soln. contg. one or more metal cations; (b) mixing the soln. from step (a) with one or more surfactants to form a surfactant/liq. mixt. and (c) heating the mixt. from step (b) above to form the particles. [on SciFinder(R)]
Resumo:
The creation of electrocatalysts based on noble metals has received a significant amount of research interest due to their extensive use as fuel cell catalysts and electrochemical sensors. There have been many attempts to improve the activity of these metals through creating nanostructures, as well as post-synthesis treatments based on chemical, electrochemical, sonochemical and thermal approaches. In many instances these methods result in a material with active surface states, which can be considered to be adatoms or clusters of atoms on the surface that have a low lattice co-ordination number making them more prone to electrochemical oxidation at a wide range of potentials that are significantly less positive than those of their bulk metal counterparts. This phenomenon has been termed pre-monolayer oxidation and has been reported to occur on a range of metallic surfaces. In this work we present findings on the presence of active sites on Pd that has been: evaporated as a thin film; electrodeposited as nanostructures; as well as commercially available Pd nanoparticles supported on carbon. Significantly, advantage is taken of the low oxidation potential of these active sites whereby bimetallic surfaces are created by the spontaneous deposition of Ag from AgNO3 to generate Pd/Ag surfaces. Interestingly this approach does not increase the surface area of the original metal but has significant implications for its further use as an electrode material. It results in the inhibition or promotion of electrocatalytic activity which is highly dependent on the reaction of interest. As a general approach the decoration of active catalytic materials with less active metals for a particular reaction also opens up the possibility of investigating the role of the initially present active sites on the surface and identifying the degree to which they are responsible for electrocatalytic activity.
Resumo:
The formation of highly anisotropic AuPt alloys has been achieved via a simple electrochemical approach without the need for organic surfactants to direct the growth process. The surface and bulk properties of these materials were characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and electrochemically by cyclic voltammetry to confirm alloy formation. It was found that AuPt materials are highly active for both the model hydrogen evolution reaction and the fuel cell relevant formic acid oxidation reaction. In particular for the latter case the preferred dehydrogenation pathway was observed at AuPt compared to nanostructured Pt prepared under identical electrochemical conditions which demonstrated the less preferred dehydration pathway. The enhanced performance is attributed to both the ensemble effect which facilitates CO(ads) removal from the surface as well as the highly anisotropic nanostructure of AuPt.
Resumo:
A method of producing particles having nano-sized grains comprises the steps of: (a) prepg. a soln. contg. one or more metal cations; (b) mixing the soln. from step (a) with one or more surfactants to form a surfactant/liq. mixt. and (c) heating the mixt. from step (b) above to form the particles. [on SciFinder(R)]
Resumo:
Diketopyrrolopyrrole (DPP)-based organic semiconductors EH-DPP-TFP and EH-DPP-TFPV with branched ethyl-hexyl solubilizing alkyl chains and end capped with trifluoromethyl phenyl groups were designed and synthesized via Suzuki coupling. These compounds show intense absorptions up to 700 nm, and thin film-forming characteristics that sensitively depend on the solvent and coating conditions. Both materials have been used as electron donors in bulk heterojunction and bilayer organic photovoltaic (OPV) devices with fullerenes as acceptors and their performance has been studied in detail. The best power conversion efficiency of 3.3% under AM1.5G illumination (100 mW cm -2) was achieved for bilayer solar cells when EH-DPP-TFPV was used with C 60, after a thermal annealing step to induce dye aggregation and interdiffusion of C 60 with the donor material. To date, this is one of the highest efficiencies reported for simple bilayer OPV devices.
Resumo:
An overview is given of the various energy storage technologies which can be used in distributed generation (DG) schemes. Description of the recent photovoltaic DG initiative in Singapore is included, in which several of the storage systems can find ready applications. Schemes pertaining to the use of solid oxide fuel cell for power quality enhancement and battery energy storage system used in conjunction with wind power generation are also described.