51 resultados para fractal sets

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have only been a small number of applications of consumer decision set theory to holiday destination choice, and these studies have tended to rely on a single cross sectional snapshot of research participants’ stated preferences. Very little has been reported on the relationship between stated destination preferences and actual travel, or changes in decision set composition over time. The paper presents a rare longitudinal examination of destination decision sets, in the context of short break holidays by car in Queensland, Australia. Two questionnaires were administered, three months apart. The first identified destination preferences while the second examined actual travel and revisited destination preferences. In relation to the conference theme, there was very little change in consumer preferences towards the competitive set of destinations over the three month period. A key implication for the destination of interest, which, in an attempt to change market perceptions, launched a new brand campaign during the period of the project, is that a long term investment in a consistent brand message will be required to change market perceptions. The results go some way to support the proposition that the positioning of a destination into a consumer’s decision set represents a source of competitive advantage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faces are complex patterns that often differ in only subtle ways. Face recognition algorithms have difficulty in coping with differences in lighting, cameras, pose, expression, etc. We propose a novel approach for facial recognition based on a new feature extraction method called fractal image-set encoding. This feature extraction method is a specialized fractal image coding technique that makes fractal codes more suitable for object and face recognition. A fractal code of a gray-scale image can be divided in two parts – geometrical parameters and luminance parameters. We show that fractal codes for an image are not unique and that we can change the set of fractal parameters without significant change in the quality of the reconstructed image. Fractal image-set coding keeps geometrical parameters the same for all images in the database. Differences between images are captured in the non-geometrical or luminance parameters – which are faster to compute. Results on a subset of the XM2VTS database are presented.