824 resultados para forming pass design

em Queensland University of Technology - ePrints Archive


Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Australian manufacturer has recently developed an innovative group of cold-formed steel hollow flange sections, one of them is LiteSteel Beams (LSBs). The LSB sections are produced from thin and high strength steels by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. They have a unique geometry consisting of rectangular hollow flanges and a relatively slender web. The LSB flexural members are subjected to lateral distortional buckling effects and hence their capacities are reduced for intermediate spans. The current design rules for lateral distortional buckling were developed based on the lower bound of numerical and experimental results. The effect of LSB section geometry was not considered although it could influence the lateral distortional buckling performance. Therefore an accurate finite element model of LSB flexural members was developed and validated using experimental and finite strip analysis results. It was then used to investigate the effect of LSB geometry. The extensive moment capacity data thus developed was used to develop improved design rules for LSBs with one of them considering the LSB geometry effects through a modified slenderness parameter. The use of the new design rules gave higher lateral distortional buckling capacities for LSB sections with intermediate slenderness. The new design rule is also able to accurately predict the lateral distortional buckling moment capacities of other hollow flange beams (HFBs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Until recently, the hot-rolled steel members have been recognized as the most popular and widely used steel group, but in recent times, the use of cold-formed high strength steel members has rapidly increased. However, the structural behavior of light gauge high strength cold-formed steel members characterized by various buckling modes is not yet fully understood. The current cold-formed steel sections such as C- and Z-sections are commonly used because of their simple forming procedures and easy connections, but they suffer from certain buckling modes. It is therefore important that these buckling modes are either delayed or eliminated to increase the ultimate capacity of these members. This research is therefore aimed at developing a new cold-formed steel beam with two torsionally rigid rectangular hollow flanges and a slender web formed using intermittent screw fastening to enhance the flexural capacity while maintaining a minimum fabrication cost. This thesis describes a detailed investigation into the structural behavior of this new Rectangular Hollow Flange Beam (RHFB), subjected to flexural action The first phase of this research included experimental investigations using thirty full scale lateral buckling tests and twenty two section moment capacity tests using specially designed test rigs to simulate the required loading and support conditions. A detailed description of the experimental methods, RHFB failure modes including local, lateral distortional and lateral torsional buckling modes, and moment capacity results is presented. A comparison of experimental results with the predictions from the current design rules and other design methods is also given. The second phase of this research involved a methodical and comprehensive investigation aimed at widening the scope of finite element analysis to investigate the buckling and ultimate failure behaviours of RHFBs subjected to flexural actions. Accurate finite element models simulating the physical conditions of both lateral buckling and section moment capacity tests were developed. Comparison of experimental and finite element analysis results showed that the buckling and ultimate failure behaviour of RHFBs can be simulated well using appropriate finite element models. Finite element models simulating ideal simply supported boundary conditions and a uniform moment loading were also developed in order to use in a detailed parametric study. The parametric study results were used to review the current design rules and to develop new design formulae for RHFBs subjected to local, lateral distortional and lateral torsional buckling effects. Finite element analysis results indicate that the discontinuity due to screw fastening has a noticeable influence only for members in the intermediate slenderness region. Investigations into different combinations of thicknesses in the flange and web indicate that increasing the flange thickness is more effective than web thickness in enhancing the flexural capacity of RHFBs. The current steel design standards, AS 4100 (1998) and AS/NZS 4600 (1996) are found sufficient to predict the section moment capacity of RHFBs. However, the results indicate that the AS/NZS 4600 is more accurate for slender sections whereas AS 4100 is more accurate for compact sections. The finite element analysis results further indicate that the current design rules given in AS/NZS 4600 is adequate in predicting the member moment capacity of RHFBs subject to lateral torsional buckling effects. However, they were inadequate in predicting the capacities of RHFBs subject to lateral distortional buckling effects. This thesis has therefore developed a new design formula to predict the lateral distortional buckling strength of RHFBs. Overall, this thesis has demonstrated that the innovative RHFB sections can perform well as economically and structurally efficient flexural members. Structural engineers and designers should make use of the new design rules and the validated existing design rules to design the most optimum RHFB sections depending on the type of applications. Intermittent screw fastening method has also been shown to be structurally adequate that also minimises the fabrication cost. Product manufacturers and builders should be able to make use of this in their applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new cold-formed steel beam, known as the LiteSteel Beam (LSB), has the potential to transform the low-rise building industry. The new beam is effectively a channel section with two rectangular hollow flanges and a slender web, and is manufactured using a simultaneous cold-forming and electric resistance welding process. Research into the flexural behaviour of single LSB members showed that the LSBs are susceptible to lateral distortional buckling effects and their moment capacities are significantly reduced for intermediate spans. Build-up LSB sections are expected to improve their flexural capacity and to enhance their applications. They are also likely to mitigate the detrimental effects of lateral distortional buckling observed with single LSB members of intermediate spans. However, the behaviour of build up beams is not well understood. Currently available design rules were found to be inadequate to predict the member moment capacities of back to back LSBs. Therefore a research project based on both experimental and numerical studies was undertaken to investigate the flexural behaviour of back to back LSBs with various longitudinal connection spacings under a uniform moment. New design rules were developed using the moment capacity data obtained using finite element analyses and experimental tests. This paper presents the details of the development of design rules for the back to back LSB sections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LiteSteel Beam (LSB) is a new cold-formed steel beam produced by OneSteel Australian Tube Mills. The new beam is effectively a channel section with two rectangular hollow flanges and a slender web, and is manufactured using a combined cold-forming and electric resistance welding process. OneSteel Australian Tube Mills is promoting the use of LSBs as flexural members in a range of applications, such as floor bearers. When LSBs are used as back to back built-up sections, they are likely to improve their moment capacity and thus extend their applications further. However, the structural behaviour of built-up beams is not well understood. Many steel design codes include guidelines for connecting two channels to form a built-up I-section including the required longitudinal spacing of connections. But these rules were found to be inadequate in some applications. Currently the safe spans of builtup beams are determined based on twice the moment capacity of a single section. Research has shown that these guidelines are conservative. Therefore large scale lateral buckling tests and advanced numerical analyses were undertaken to investigate the flexural behaviour of back to back LSBs connected by fasteners (bolts) at various longitudinal spacings under uniform moment conditions. In this research an experimental investigation was first undertaken to study the flexural behaviour of back to back LSBs including its buckling characteristics. This experimental study included tensile coupon tests, initial geometric imperfection measurements and lateral buckling tests. The initial geometric imperfection measurements taken on several back to back LSB specimens showed that the back to back bolting process is not likely to alter the imperfections, and the measured imperfections are well below the fabrication tolerance limits. Twelve large scale lateral buckling tests were conducted to investigate the behaviour of back to back built-up LSBs with various longitudinal fastener spacings under uniform moment conditions. Tests also included two single LSB specimens. Test results showed that the back to back LSBs gave higher moment capacities in comparison with single LSBs, and the fastener spacing influenced the ultimate moment capacities. As the fastener spacing was reduced the ultimate moment capacities of back to back LSBs increased. Finite element models of back to back LSBs with varying fastener spacings were then developed to conduct a detailed parametric study on the flexural behaviour of back to back built-up LSBs. Two finite element models were developed, namely experimental and ideal finite element models. The models included the complex contact behaviour between LSB web elements and intermittently fastened bolted connections along the web elements. They were validated by comparing their results with experimental results and numerical results obtained from an established buckling analysis program called THIN-WALL. These comparisons showed that the developed models could accurately predict both the elastic lateral distortional buckling moments and the non-linear ultimate moment capacities of back to back LSBs. Therefore the ideal finite element models incorporating ideal simply supported boundary conditions and uniform moment conditions were used in a detailed parametric study on the flexural behaviour of back to back LSB members. In the detailed parametric study, both elastic buckling and nonlinear analyses of back to back LSBs were conducted for 13 LSB sections with varying spans and fastener spacings. Finite element analysis results confirmed that the current design rules in AS/NZS 4600 (SA, 2005) are very conservative while the new design rules developed by Anapayan and Mahendran (2009a) for single LSB members were also found to be conservative. Thus new member capacity design rules were developed for back to back LSB members as a function of non-dimensional member slenderness. New empirical equations were also developed to aid in the calculation of elastic lateral distortional buckling moments of intermittently fastened back to back LSBs. Design guidelines were developed for the maximum fastener spacing of back to back LSBs in order to optimise the use of fasteners. A closer fastener spacing of span/6 was recommended for intermediate spans and some long spans where the influence of fastener spacing was found to be high. In the last phase of this research, a detailed investigation was conducted to investigate the potential use of different types of connections and stiffeners in improving the flexural strength of back to back LSB members. It was found that using transverse web stiffeners was the most cost-effective and simple strengthening method. It is recommended that web stiffeners are used at the supports and every third points within the span, and their thickness is in the range of 3 to 5 mm depending on the size of LSB section. The use of web stiffeners eliminated most of the lateral distortional buckling effects and hence improved the ultimate moment capacities. A suitable design equation was developed to calculate the elastic lateral buckling moments of back to back LSBs with the above recommended web stiffener configuration while the same design rules developed for unstiffened back to back LSBs were recommended to calculate the ultimate moment capacities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effective daylighting of multistorey commercial building interiors poses an interesting problem for designers in Australia’s tropical and subtropical context. Given that a building exterior receives adequate sun and skylight as dictated by location-specific factors such as weather, siting and external obstructions; then the availability of daylight throughout its interior is dependant on certain building characteristics: the distance from a window façade (room depth), ceiling or window head height, window size and the visible transmittance of daylighting apertures. The daylighting of general stock, multistorey commercial buildings is made difficult by their design limitations with respect to some of these characteristics. The admission of daylight to these interiors is usually exclusively by vertical windows. Using conventional glazing, such windows can only admit sun and skylight to a depth of approximately 2 times the window height. This penetration depth is typically much less than the depth of the office interiors, so that core areas of these buildings receive little or no daylight. This issue is particularly relevant where deep, open plan office layouts prevail. The resulting interior daylight pattern is a relatively narrow perimeter zone bathed in (sometimes too intense) light, contrasted with a poorly daylit core zone. The broad luminance range this may present to a building occupant’s visual field can be a source of discomfort glare. Furthermore, the need in most tropical and subtropical regions to restrict solar heat gains to building interiors for much of the year has resulted in the widespread use of heavily tinted or reflective glazing on commercial building façades. This strategy reduces the amount of solar radiation admitted to the interior, thereby decreasing daylight levels proportionately throughout. However this technique does little to improve the way light is distributed throughout the office space. Where clear skies dominate weather conditions, at different times of day or year direct sunlight may pass unobstructed through vertical windows causing disability or discomfort glare for building occupants and as such, its admission to an interior must be appropriately controlled. Any daylighting system to be applied to multistorey commercial buildings must consider these design obstacles, and attempt to improve the distribution of daylight throughout these deep, sidelit office spaces without causing glare conditions. The research described in this thesis delineates first the design optimisation and then the actual prototyping and manufacture process of a daylighting device to be applied to such multistorey buildings in tropical and subtropical environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, two different high bandwidth converter control strategies are discussed. One of the strategies is for voltage control and the other is for current control. The converter, in each of the cases, is equipped with an output passive filter. For the voltage controller, the converter is equipped with an LC filter, while an output has an LCL filter for current controller. The important aspect that has been discussed the paper is to avoid computation of unnecessary references using high-pass filters in the feedback loop. The stability of the overall system, including the high-pass filters, has been analyzed. The choice of filter parameters is crucial for achieving desirable system performance. In this paper, the bandwidth of achievable performance is presented through frequency (Bode) plot of the system gains. It has been illustrated that the proposed controllers are capable of tracking fundamental frequency components along with low-order harmonic components. Extensive simulation results are presented to validate the control concepts presented in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: The LiteSteel Beam (LSB) is a new cold-formed hollow flange channel section produced using dual electric resistance welding and automated continuous roll-forming technologies. The innovative LSB sections have many beneficial characteristics and are commonly used as flexural members in building construction. However, limited research has been undertaken on the shear behaviour of LSBs. Therefore a detailed investigation including both numerical and experimental studies was undertaken to investigate the shear behaviour of LSBs. Finite element models of LSBs in shear were developed to simulate the nonlinear ultimate strength behaviour of LSBs including their elastic buckling characteristics, and were validated by comparing their results with experimental test results. Validated finite element models were then used in a detailed parametric study into the shear behaviour of LSBs. The parametric study results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LSBs. Significant improvements to web shear buckling occurred due to the presence of torsionally rigid rectangular hollow flanges while considerable post-buckling strength was also observed. This paper therefore proposes improved shear strength design rules for LSBs within the current cold-formed steel code guidelines. It presents the details of the parametric study and the new shear strength equations. The new equations were also developed based on the direct strength method. The proposed shear strength equations have the potential to be used with other conventional cold-formed steel sections such as lipped channel sections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. The LSBs are commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. However, no research has been undertaken on the shear behaviour and strength of LSBs with web openings. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs with web openings. In this research, finite element models of LSBs with web openings in shear were developed to simulate the shear behaviour and strength of LSBs including their buckling characteristics. They were then validated by comparing their results with available experimental test results and used in a detailed parametric study. The results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LSBs with web openings. Improved design equations have been proposed for the shear capacity of LSBs with web openings based on both experimental and parametric study results. An alternative shear design method based on an equivalent reduced web thickness was also proposed. It was found that the same shear strength design rules developed for LSBs without web openings can be used for LSBs with web openings provided the equivalent reduced web thickness equation developed in this paper is used. This is a significant advancement as it simplifies the shear design methods of LSBs with web openings considerably.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is a new hollow flange channel section developed using a patented dual electric resistance welding and cold-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a slender web, and is commonly used as flexural members. However, the LSB flexural members are subjected to a relatively new lateral distortional buckling mode, which reduces their moment capacities. Unlike lateral torsional buckling, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist and cross sectional change due to web distortion. Therefore a detailed investigation into the lateral buckling behaviour of LSB flexural members was undertaken using experiments and finite element analyses. This paper presents the details of suitable finite element models developed to simulate the behaviour and capacity of LSB flexural members subject to lateral buckling. The models included all significant effects that influence the ultimate moment capacities of such members, including material inelasticity, lateral distortional buckling deformations, web distortion, residual stresses, and geometric imperfections. Comparison of elastic buckling and ultimate moment capacity results with predictions from other numerical analyses and available buckling moment equations, and experimental results showed that the developed finite element models accurately predict the behaviour and moment capacities of LSBs. The validated model was then used in a detailed parametric study that produced accurate moment capacity data for all the LSB sections and improved design rules for LSB flexural members subject to lateral distortional buckling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fashion ecosystem is at boiling point as consumers turn up the heat in all areas of the fashion value, trend and supply chain. While traditionally fashion has been a monologue from designer brand to consumer, new technology and the virtual world has given consumers a voice to engage brands in a conversation to express evolving needs, ideas and feedback. Product customisation is no longer innovative. Successful brands are including customers in the design process and holding conversations ‘with’ them to improve product, manufacturing, sales, distribution, marketing and sustainable business practices. Co-creation and crowd sourcing are integral to any successful business model and designers and manufacturers are supplying the technology or tools for these creative, active, participatory ‘prosumers’. With this collaboration however, there arises a worrying trend for fashion professionals. The ‘design it yourself’, ‘indiepreneur’ who with the combination of technology, the internet, excess manufacturing capacity, crowd funding and the idea of sharing the creative integrity of a product (‘copyleft’ not copyright) is challenging the notion that the fashion supply chain is complex. The passive ‘consumer’ no longer exists. Fashion designers now share the stage with ‘amateur’ creators who are disrupting every activity they touch, while being motivated by profit as well as a quest for originality and innovation. This paper examines the effects this ‘consumer’ engagement is having on traditional fashion models and the fashion supply chain. Crowd sourcing, crowd funding, co-creating, design it yourself, global sourcing, the virtual supply chain, social media, online shopping, group buying, consumer to consumer marketing and retail, and branding the ‘individual’ are indicative of the new consumer-driven fashion models. Consumers now drive the fashion industry - from setting trends, through to creating, producing, selling and marketing product. They can turn up the heat at any time _ and any point _ in the fashion supply chain. They are raising the temperature at each and every stage of the chain, decreasing or eliminating the processes involved: decreasing the risk of fashion obsolescence, quantities for manufacture, complexity of distribution and the consumption of product; eliminating certain stages altogether and limiting the brand as custodians of marketing. Some brands are discovering a new ‘enemy’ – the very people they are trying to sell to. Keywords: fashion supply chain, virtual world, consumer, ‘prosumers’, co-creation, fashion designers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently many international tertiary educational programs have capitalised on the value design and business can have upon their interception (Martin, 2009; Brown, 2008; Bruce and Bessant, 2002; Manzini, 2009). This paper discusses the role that two teaching units – New Product Development and Design Led Innovation – play in forming an understanding of commercialisation needed in today’s Industrial Design education. These units are taught consecutively in the later years of the Bachelor of Industrial Design program at the Queensland University of Technology, Brisbane, Australia. In this paper, each teaching unit is discussed in detail and then as a conglomerate, in order to form a basis of knowledge students need in order to fully capitalise on the value design has in business, and to produce a more capable Industrial Design graduate of the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incorporating engineering concepts into middle school curriculum is seen as an effective way to improve students’ problem-solving skills. A selection of findings is reported from a science, technology, engineering and mathematics (STEM)-based unit in which students in the second year (grade 8) of a three-year longitudinal study explored engineering concepts and principles pertaining to the functioning of simple machines. The culminating activity, the focus of this paper, required the students to design, construct, test, and evaluate a trebuchet catapult. We consider findings from one of the schools, a co-educational school, where we traced the design process developments of four student groups from two classes. The students’ descriptions and explanations of the simple machines used in their catapult design are examined, together with how they rated various aspects of their engineering designs. Included in the findings are students’ understanding of how their simple machines were simulated by the resources supplied and how the machines interacted in forming a complex machine. An ability to link physical materials with abstract concepts and an awareness of design constraints on their constructions were apparent, although a desire to create a ‘‘perfect’’ catapult despite limitations in the physical materials rather than a prototype for testing concepts was evident. Feedback from teacher interviews added further insights into the students’ developments as well as the teachers’ professional learning. An evolving framework for introducing engineering education in the pre-secondary years is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Joint venture design teams are formed to combine resources and expertise in order to secure multi-discipline engineering design services on major projects. Bringing together resources from two ordinarily competing companies to form one joint team is however challenging as each parent company brings to the project its own organisational culture, processes and team attitudes. This study examined the factors that impact on forming a successful joint venture project team. Three critical areas were identified from an extensive literature review; Joint Venture Arrangements, Parent Companies and Forming the Team; and a survey was conducted with professionals who have worked in joint venture project teams in the Australian building industry in order to identify factors that affected successful joint venture team formation, and the common lessons learnt. This study reinforced the importance of three key criteria - trust, commitment and compatibility - for partner alignment. The results also identified four key lessons learnt which included; selecting the right resources, enabling a collaborative working environment by way of project office, implementing an independent Joint Venture Manager, and allocating work which is best for project with fees reflecting risk where risk is disproportionate.